GVKun编程网logo

Computer Processors (COMP1212)

1

本文的目的是介绍ComputerProcessors(COMP1212)的详细情况,我们将通过专业的研究、有关数据的分析等多种方式,同时也不会遗漏关于AndroidStudio3.0+Annotati

本文的目的是介绍Computer Processors (COMP1212)的详细情况,我们将通过专业的研究、有关数据的分析等多种方式,同时也不会遗漏关于Android Studio 3.0+ Annotation processors must be explicitly declared now、Annotation processors must be explicitly declared now. The following depende、Apache ignite 客户端节点重新连接获取错误 org.apache.ignite.internal.processors.cache.CacheStoppedException:无法执行缓存操作、Building a Linux Image and Downloading onto i.MX Processors Using a Virtual Machine的知识。

本文目录一览:

Computer Processors (COMP1212)

Computer Processors (COMP1212)


Coursework 1
Computer Processors (COMP1212)
The files required to complete this coursework are available on GitLab.
You should complete the coursework in the files provided, do not rename
any of the files or change the directory structure.
Submission You must submit your work via GitLab and also on the Minerva.
1. GitLab: Ensure that all changes have been committed and pushed
before the deadline. You should commit frequently.
2. Minerva: Ensure that the coursework directory is compressed into
a .tar.gz archive and submitted to the Minerva.
Late submissions are accepted up to 7 days late. Each day, or part of
a day, will incur a 5% penalty.
Deadline TBC.

代写 COMP1212 作业、代做 c/c++,Java 程序语言作业、代做 Python 实验作业
Weighting This piece of summative coursework is worth 15% of your grade.
This coursework involves implementing components of a computer processor
covered in the lectures. You should provide an implementation of each
of the following components in hdl. You are provided with a description of
the behaviour of each of the components as well as test files to ensure it
behaves according to specification.
Implement the following .hdl files
- And.hdl
- Or.hdl
- Not.hdl
- Xor.hdl
- Mux.hdl
- DMux.hdl
- And16.hdl
1
- Or16.hdl
- Not16.hdl
- Mux16.hdl
- Or8Way.hdl
- Mux4Way16.hdl
- Mux8Way16.hdl
- DMux4Way.hdl
- DMux8Way.hdl
The reflective account is submitted via a Minerva test.
Marking
The marking of the .hdl files is automated so it is important that you do not
rename or alter the directory structure of your submission from that provided
on GitLab and Minerva. Marks will be allocated in the following way:
- 10 marks for correct implementation of the components according to
their specification
- 5 marks for minimising complexity of the implementations
2
Chip descriptions
Chip name: And
Inputs: x, y
Outputs: out
Function: out = 1 if (x == 1 and y == 1) 0 otherwise
Chip name: Or
Inputs: x, y
Outputs: out
Function: out = 1 if (x == 1 or y == 1) 0 otherwise
Chip name: Not
Inputs: x
Outputs: out
Function: out = not x
Chip name: Xor
Inputs: x, y
Outputs: out
Function: out = not (x == y)
3
Chip name: Mux
Inputs: x, y,sel
Outputs: out
Function: If sel == 1 then out = y else out= x
Chip name: DMux
Inputs: in,sel
Outputs: x, y
Function: {x, y} = {in, 0} if sel == 0 {0, in} if sel == 1
Chip name: And16
Inputs: x[16], y[16]
Outputs: out[16]
Function: For i = 0 . . . 15 out[i] = x[i] and y[i]
Chip name: Or16
Inputs: x[16], y[16]
Outputs: out[16]
Function: For i = 0 . . . 15 out[i] = x[i] or y[i]
4
Chip name: Not16
Inputs: x[16]
Outputs: out[16]
Function: For i = 0 . . . 15 out[i] = not x[i]
Chip name: Mux16
Inputs: x[16], y[16],sel
Outputs: out[16]
Function: If sel == 1 then out = y else out = x
Chip name: Or8Way
Inputs: x[8]
Outputs: out
Function: out = x[0] or x[1] or . . . or x[7]
5
Chip name: Mux4Way16
Inputs: w[16], x[16], y[16], z[16], sel[2]
Outputs: out[16]
Function: out = w if sel == 00
x if sel == 01
y if sel == 10
z if sel == 11
Chip name: Mux8Way16
Inputs: s[16], t[16], u[16], v[16], w[16], x[16], y[16], z[16], sel[3]
Outputs: out[16]
Function: out = s if sel == 000
t if sel == 001
u if sel == 010
v if sel == 011
w if sel == 100
x if sel == 101
y if sel == 110
z if sel == 111
6
Chip name: DMux4Way
Inputs: in,sel[2]
Outputs: w, x, y, z
Function: (w, x, y, z) = (in, 0, 0, 0) if sel == 00
(0, in, 0, 0) if sel == 01
(0, 0, in, 0) if sel == 10
(0, 0, 0, in) if sel == 11
Chip name: DMux8Way
Inputs: in,sel[2]
Outputs: s, t, u, v, w, x, y, z
Function: (s, t, u, v, w, x, y, z) =
(in, 0, 0, 0, 0, 0, 0, 0) if sel == 000
(0, in, 0, 0, 0, 0, 0, 0) if sel == 001
etc.
(0, 0, 0, 0, 0, 0, 0, in) if sel == 111

代写 COMP1212 作业、代做 c/c++,Java 程序语言作业、代做 Python 实验作业、代写 GitLab 作业
Coursework 1
Computer Processors (COMP1212)
The files required to complete this coursework are available on GitLab.
You should complete the coursework in the files provided, do not rename
any of the files or change the directory structure.
Submission You must submit your work via GitLab and also on the Minerva.
1. GitLab: Ensure that all changes have been committed and pushed
before the deadline. You should commit frequently.
2. Minerva: Ensure that the coursework directory is compressed into
a .tar.gz archive and submitted to the Minerva.
Late submissions are accepted up to 7 days late. Each day, or part of
a day, will incur a 5% penalty.
Deadline TBC.
Weighting This piece of summative coursework is worth 15% of your grade.
This coursework involves implementing components of a computer processor
covered in the lectures. You should provide an implementation of each
of the following components in hdl. You are provided with a description of
the behaviour of each of the components as well as test files to ensure it
behaves according to specification.
Implement the following .hdl files
- And.hdl
- Or.hdl
- Not.hdl
- Xor.hdl
- Mux.hdl
- DMux.hdl
- And16.hdl
1
- Or16.hdl
- Not16.hdl
- Mux16.hdl
- Or8Way.hdl
- Mux4Way16.hdl
- Mux8Way16.hdl
- DMux4Way.hdl
- DMux8Way.hdl
The reflective account is submitted via a Minerva test.
Marking
The marking of the .hdl files is automated so it is important that you do not
rename or alter the directory structure of your submission from that provided
on GitLab and Minerva. Marks will be allocated in the following way:
- 10 marks for correct implementation of the components according to
their specification
- 5 marks for minimising complexity of the implementations
2
Chip descriptions
Chip name: And
Inputs: x, y
Outputs: out
Function: out = 1 if (x == 1 and y == 1) 0 otherwise
Chip name: Or
Inputs: x, y
Outputs: out
Function: out = 1 if (x == 1 or y == 1) 0 otherwise
Chip name: Not
Inputs: x
Outputs: out
Function: out = not x
Chip name: Xor
Inputs: x, y
Outputs: out
Function: out = not (x == y)
3
Chip name: Mux
Inputs: x, y,sel
Outputs: out
Function: If sel == 1 then out = y else out= x
Chip name: DMux
Inputs: in,sel
Outputs: x, y
Function: {x, y} = {in, 0} if sel == 0 {0, in} if sel == 1
Chip name: And16
Inputs: x[16], y[16]
Outputs: out[16]
Function: For i = 0 . . . 15 out[i] = x[i] and y[i]
Chip name: Or16
Inputs: x[16], y[16]
Outputs: out[16]
Function: For i = 0 . . . 15 out[i] = x[i] or y[i]
4
Chip name: Not16
Inputs: x[16]
Outputs: out[16]
Function: For i = 0 . . . 15 out[i] = not x[i]
Chip name: Mux16
Inputs: x[16], y[16],sel
Outputs: out[16]
Function: If sel == 1 then out = y else out = x
Chip name: Or8Way
Inputs: x[8]
Outputs: out
Function: out = x[0] or x[1] or . . . or x[7]
5
Chip name: Mux4Way16
Inputs: w[16], x[16], y[16], z[16], sel[2]
Outputs: out[16]
Function: out = w if sel == 00
x if sel == 01
y if sel == 10
z if sel == 11
Chip name: Mux8Way16
Inputs: s[16], t[16], u[16], v[16], w[16], x[16], y[16], z[16], sel[3]
Outputs: out[16]
Function: out = s if sel == 000
t if sel == 001
u if sel == 010
v if sel == 011
w if sel == 100
x if sel == 101
y if sel == 110
z if sel == 111
6
Chip name: DMux4Way
Inputs: in,sel[2]
Outputs: w, x, y, z
Function: (w, x, y, z) = (in, 0, 0, 0) if sel == 00
(0, in, 0, 0) if sel == 01
(0, 0, in, 0) if sel == 10
(0, 0, 0, in) if sel == 11
Chip name: DMux8Way
Inputs: in,sel[2]
Outputs: s, t, u, v, w, x, y, z
Function: (s, t, u, v, w, x, y, z) =
(in, 0, 0, 0, 0, 0, 0, 0) if sel == 000
(0, in, 0, 0, 0, 0, 0, 0) if sel == 001
etc.
(0, 0, 0, 0, 0, 0, 0, in) if sel == 111

因为专业,所以值得信赖。如有需要,请加 QQ99515681 或邮箱:99515681@qq.com 

微信:codinghelp

Android Studio 3.0+ Annotation processors must be explicitly declared now

Android Studio 3.0+ Annotation processors must be explicitly declared now

把Android Studio 升级到3.0+ 版本的时候出现该问题:

 
可以看到 给了我们两种解决办法:
 
1、
即 给出现问题的三方 加上 annotationProcessor配置
 
 
2
 
 在相应的module的gradle文件中,使用javaCompileOptions
defaultConfig {
        applicationId "com.xxx.xxx"
        minSdkVersion 15
        targetSdkVersion 26
        versionCode 1
        versionName "1.0"
        
        //添加了javaCompileOptions 
        javaCompileOptions {
            annotationProcessorOptions {
                includeCompileClasspath = true
            }
        }
    }

注意,该解决方案后面还有一句话:

翻译一下:注意该方法在未来可能会被抛弃
 
也就是说 推荐使用第一种方法来解决该问题。

 

 
 

Annotation processors must be explicitly declared now. The following depende

Annotation processors must be explicitly declared now. The following depende

体验最新版AndroidStudio3.0 Canary 8的时候,发现之前项目的butter knife报错,用到注解的应该都会报错
Error:Execution failed for task '':app:javaPreCompileDebug''.
> Annotation processors must be explicitly declared now.  The following dependencies on the compile classpath are found to contain annotation processor.  Please add them to the annotationProcessor configuration.
    - butterknife-7.0.1.jar
  Alternatively, set android.defaultConfig.javaCompileOptions.annotationProcessorOptions.includeCompileClasspath = true to continue with previous behavior.  Note that this option is deprecated and will be removed in the future.
  See https://developer.android.com/r/tools/annotation-processor-error-message.html for more details.

在app的build中
android {
    ...
    defaultConfig {
        ...
        //添加如下配置就OK了
        javaCompileOptions { annotationProcessorOptions { includeCompileClasspath = true } }
    }
    ...
}
--------------------- 
作者:Keep_Holding_On 
来源:CSDN 
原文:https://blog.csdn.net/keep_holding_on/article/details/76188657 
版权声明:本文为博主原创文章,转载请附上博文链接!

Apache ignite 客户端节点重新连接获取错误 org.apache.ignite.internal.processors.cache.CacheStoppedException:无法执行缓存操作

Apache ignite 客户端节点重新连接获取错误 org.apache.ignite.internal.processors.cache.CacheStoppedException:无法执行缓存操作

如何解决Apache ignite 客户端节点重新连接获取错误 org.apache.ignite.internal.processors.cache.CacheStoppedException:无法执行缓存操作

我已经使用以下配置启动了 ignite 服务器以及应用程序作为客户端节点

public IgniteConfigurer config() {
return cfg -> {
    // The node will be started as a client node.
    cfg.setClientMode(true);
    // Classes of custom Java logic will be transferred over the wire from this app.
    cfg.setPeerClassLoadingEnabled(false);
    // Setting up an IP Finder to ensure the client can locate the servers.
    final TcpdiscoveryMulticastIpFinder ipFinder = new TcpdiscoveryMulticastIpFinder();
    ipFinder.setAddresses(Arrays.asList(ip));
    cfg.setdiscoverySpi(new TcpdiscoverySpi().setIpFinder(ipFinder));
    // Cache Metrics log frequency. If 0 then log print disable.
    cfg.setMetricslogFrequency(Integer.parseInt(cacheMetricslogFrequency));
    // setting up storage configuration
    final DataStorageConfiguration storageCfg = new DataStorageConfiguration();
    storageCfg.getDefaultDataRegionConfiguration().setPersistenceEnabled(true);
    storageCfg.setStoragePath(cacheStorage);
    // setting up data region for storage
    final DataRegionConfiguration defaultRegion = new DataRegionConfiguration();
    defaultRegion.setName(cacheDefaultRegionName);
    // Sets initial memory region size. When the used memory size exceeds this value,new chunks of memory will be allocated
    defaultRegion.setinitialSize(Long.parseLong(cacheRegionInitSize));
    storageCfg.setDefaultDataRegionConfiguration(defaultRegion);
    cfg.setDataStorageConfiguration(storageCfg);
    cfg.setworkdirectory(cacheStorage);
    final TcpCommunicationSpi communicationSpi = new TcpCommunicationSpi();
    // Sets message queue limit for incoming and outgoing messages
    communicationSpi.setMessageQueueLimit(Integer.parseInt(cacheTcpCommunicationSpiMessageQueueLimit));
    cfg.setCommunicationSpi(communicationSpi);
    final CacheCheckpointSpi cpspi = new CacheCheckpointSpi();
    cfg.setCheckpointSpi(cpspi);
    final FifoQueueCollisionSpi colSpi = new FifoQueueCollisionSpi();
    // Execute all jobs sequentially by setting parallel job number to 1.
    colSpi.setParallelJobsNumber(Integer.parseInt(cacheParallelJobs));
    cfg.setCollisionSpi(colSpi);
    // set failure handler for auto connection if ignite server stop/starts.
    cfg.setFailureHandler(new StopNodeFailureHandler());
};

}

一切正常。现在我已经停止了 ignite 服务器并再次重新启动了 ignite 服务器。重新启动 ignite 服务器后,当我对我进行任何缓存操作时,出现类似

的错误
Caused by: class org.apache.ignite.internal.processors.cache.CacheStoppedException: Failed to perform cache operation (cache is stopped): mycache1
... 63 more

当我看到 ignite 服务器日志时,它显示客户端已连接。查看下面的日志

[17:25:41]   ^-- Baseline [id=0,size=1,online=1,offline=0]
[17:25:42] Topology snapshot [ver=2,locNode=ea964803,servers=1,clients=1,state=ACTIVE,cpus=8,offheap=6.3GB,heap=4.5GB]
[17:25:42]   ^-- Baseline [id=0,offline=0]

那么为什么不允许通过作为客户端节点运行的应用程序执行任何缓存操作?。

解决方法

您似乎是在未配置为持久性的默认数据区域内创建 "mycache1"

即你首先定义一个默认区域是持久的:

storageCfg.getDefaultDataRegionConfiguration().setPersistenceEnabled(true);
storageCfg.setStoragePath(cacheStorage);

但是你正在重新创建它没有 setPersistenceEnabled:

    final DataRegionConfiguration defaultRegion = new DataRegionConfiguration();
    defaultRegion.setName(cacheDefaultRegionName);
    // Sets initial memory region size. When the used memory size exceeds this value,new chunks of memory will be allocated
    defaultRegion.setInitialSize(Long.parseLong(cacheRegionInitSize));
    storageCfg.setDefaultDataRegionConfiguration(defaultRegion);
   

因此您需要将 getDefaultDataRegionConfiguration().setPersistenceEnabled(true); 替换为 storageCfg.setDefaultDataRegionConfiguration(defaultRegion); 以启用持久性,我认为您将不再拥有 CacheStoppedException

至于内存配置(我认为这里应用了它)和动态创建的缓存,这是预期的行为。因为在这种情况下,服务器对之前创建的缓存一无所知,您需要明确地重新创建它们。做类似的事情:

try{

... 
}
catch(Exception exception) {
  if (exception instanceof IgniteException) {
  final Throwable rootCause = getRootCause(exception);

  if(rootCause instanceof CacheStoppedException)
  {
    ignite.cache("mycache1");
    mylogger.info("Connection re-estabilished with the cache.");
  }
}

Building a Linux Image and Downloading onto i.MX Processors Using a Virtual Machine

Building a Linux Image and Downloading onto i.MX Processors Using a Virtual Machine

点击获取完整资源:Building a Linux Image and Downloading onto i.MX Processors Using a Virtual Machine

This
application note specifies the following:
• The details of how to create a virtual
machine using open source software
on a Windows machin ...

点击获取完整资源:Building a Linux Image and Downloading onto i.MX Processors Using a Virtual Machine

关于Computer Processors (COMP1212)的问题就给大家分享到这里,感谢你花时间阅读本站内容,更多关于Android Studio 3.0+ Annotation processors must be explicitly declared now、Annotation processors must be explicitly declared now. The following depende、Apache ignite 客户端节点重新连接获取错误 org.apache.ignite.internal.processors.cache.CacheStoppedException:无法执行缓存操作、Building a Linux Image and Downloading onto i.MX Processors Using a Virtual Machine等相关知识的信息别忘了在本站进行查找喔。

本文标签: