对于想了解如何在Keras的LSTM中修复以下错误?如果RNN是有状态的,请指定`batch_input_shape`的读者,本文将是一篇不可错过的文章,并且为您提供关于ABAP中BOM批导程序,以及
对于想了解如何在Keras的LSTM中修复以下错误?如果RNN是有状态的,请指定`batch_input_shape`的读者,本文将是一篇不可错过的文章,并且为您提供关于ABAP中BOM批导程序,以及函数CS_BI_BOM_CREATE_BATCH_INPUT1的用法、android.view.inputmethod.InputConnectionWrapper的实例源码、attr 'output_shapes' 为 0 的长度必须至少为 1、AttributeError:'LogisticRegressionGD'对象没有属性'net_input'为什么会出现此错误?我定义了net_input的有价值信息。
本文目录一览:- 如何在Keras的LSTM中修复以下错误?如果RNN是有状态的,请指定`batch_input_shape`
- ABAP中BOM批导程序,以及函数CS_BI_BOM_CREATE_BATCH_INPUT1的用法
- android.view.inputmethod.InputConnectionWrapper的实例源码
- attr 'output_shapes' 为 0 的长度必须至少为 1
- AttributeError:'LogisticRegressionGD'对象没有属性'net_input'为什么会出现此错误?我定义了net_input
如何在Keras的LSTM中修复以下错误?如果RNN是有状态的,请指定`batch_input_shape`
如何解决如何在Keras的LSTM中修复以下错误?如果RNN是有状态的,请指定`batch_input_shape`?
在Keras中运行LSTM时出现以下错误:
ValueError: If a RNN is stateful,it needs to kNow its batch size. Specify the batch size of your input tensors:
- If using a Sequential model,specify the batch size by passing a `batch_input_shape` argument to your first layer.
- If using the functional API,specify the batch size by passing a `batch_shape` argument to your Input layer.
我有一个Pandas数据框,它是按分钟索引的时间序列,训练集和测试集为X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = .2,shuffle = False)
。 X_train.shape
是(27932,7),而X_test.shape
是(6984,7)。我将X_train和X_test标准化并重塑为3D形式:
# normalizing the data
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
X_train = X_train.reshape(6983,4,X_train.shape[1])
X_test = X_test.reshape(1746,X_test.shape[1])
y_train = y_train.values.reshape(6983,1)
y_test = y_test.values.reshape(1746,1)
X重塑背后的逻辑是,我希望我的LSTM在6983个样本上学习4个时间步长(即4分钟)的样本。我想针对(X_train.shape[0],1,X_train.shape[1])
的重塑进行测试。
我的LSTM如下:
# Creating our model''s structure
model = Sequential()
model.add(Bidirectional(LSTM(4,batch_input_shape = (X_train.shape[0],X_train.shape[1],X_train.shape[2]),return_sequences = True,stateful = True)))
model.add(Dropout(0.2))
model.add(Bidirectional(LSTM(4)))
model.add(Dense(1,activation = ''sigmoid''))
es = EarlyStopping(monitor = ''val_loss'',patience = 10)
# Compiling the model
model.compile(loss = ''binary_crossentropy'',optimizer = ''adam'',metrics = [''Recall''])
# Fitting the model
history = model.fit(X_train,epochs = 50,verbose = 1,validation_data = (X_test,y_test),callbacks = [es])
具有讽刺意味的是,即使我在LSTM的第一层中明确声明了batch_input_shape
和stateful = True
,我仍然遇到上述错误。如果LSTM使用X_train的3D形状(X_train.shape[0],X_train.shape[1])
和X_test的3D形状(X_test.shape[0],X_test.shape[1])
,我运行LSTM没问题。
我的代码的哪一部分触发了错误?
顺便说一句,我无法通过比代码中描述的更多的隐藏单元来提高LSTM的性能。这看起来令人惊讶吗?
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)
ABAP中BOM批导程序,以及函数CS_BI_BOM_CREATE_BATCH_INPUT1的用法
* Program Name : BOM批导入
* Purpose :
* Project Name :
* Created by :
* Create on : 20130527
* Functional Consultant :
* Description :
*此程序主要功能为BOM批导入
*客户使用固定的EXCEL格式的文件格式,通过批导程序,导入相关表中。导入结果可以查询
*----------------------------------------------------------------------*
* Modification Log
*Date Programmer Corr. # Description
*
*----------------------------------------------------------------------*
REPORT ZPP_BOM_BATCH_CREATE
MESSAGE-ID 00
LINE-COUNT 50
LINE-SIZE 132
NO STANDARD PAGE heading.
*----------------------------------------------------------------------*
* Table Work Areas
*----------------------------------------------------------------------*
TYPE-POOLS: SLIS.
TYPE-POOLS: KCDE.
*&---------------------------------------------------------------------*
*& TABLES
*&---------------------------------------------------------------------*
TABLES: MAST,
STKO,
STPO.
*----------------------------------------------------------------------*
* Global Internal Tables Declaration
*----------------------------------------------------------------------*
DATA: IT_FILE TYPE FILETABLE.
TYPES:BEGIN OF TY_IT_UPLOAD,
WERKS LIKE MAST-WERKS, "工厂
MATNR LIKE MAST-MATNR, "物料
BMENG(13), "数量
STLAL LIKE STKO-STLAL, "可选BOM
POSNR LIKE STPO-POSNR, "组件项目号
IDNRK LIKE STPO-IDNRK, "SAP组件物料号
MENGE(13), "组件数量
MEINS LIKE STPO-MEINS, "组件单位
AUSCH(5), "部件废品百分数
KZKUP LIKE STPO-KZKUP, "是否为联产品(指示符:联合产品)
LGORT LIKE STPO-LGORT, "生产仓储地点
VERTI LIKE STPO-VERTI, "分配代码
ALPGR LIKE STPO-ALPGR, "替代项目组
ALPRF LIKE STPO-ALPRF, "优先级
ALPST LIKE STPO-ALPST, "策略
EWAHR(3), "使用可能性
END OF TY_IT_UPLOAD.
**定义一个带有Header line的内存表IT
DATA:IT_UPLOAD TYPE TABLE OF TY_IT_UPLOAD WITH HEADER LINE.
DATA:WA_IT_UPLOAD TYPE TY_IT_UPLOAD.
*----------------------------------------------------------------------*
* Global Variants Declaration
*----------------------------------------------------------------------*
DATA: G_REPID TYPE SY-REPID.
DATA: IT_FIELD TYPE SLIS_T_FIELDCAT_ALV.
*定义读入EXCEL的内表
DATA GIT_EXCEL TYPE KCDE_INTERN_STRUC OCCURS 0 WITH HEADER LINE.
TYPES:BEGIN OF T_OUT.
INCLUDE STRUCTURE IT_UPLOAD.
TYPES FLAG(1).
TYPES MESSAGE(200).
TYPES:END OF T_OUT.
DATA:IT_OUT TYPE TABLE OF T_OUT WITH HEADER LINE.
DATA: L_NAME LIKE WWWDATATAB.
DATA: L_FULLPATH TYPE STRING.
*----------------------------------------------------------------------*
* Selection Screen
*----------------------------------------------------------------------*
SELECTION-SCREEN BEGIN OF BLOCK FRAME2 WITH FRAME TITLE T2.
ParaMETER: P_RB_1 RAdioBUTTON GROUP G1 USER-COMMAND F1 DEFAULT ''X'',
P_RB_2 RAdioBUTTON GROUP G1.
SELECTION-SCREEN END OF BLOCK FRAME2.
*****选择条件
SELECTION-SCREEN BEGIN OF BLOCK BL01 WITH FRAME TITLE TEXT-001.
ParaMETERS: P_FILE LIKE RLGRAP-FILENAME MODIF ID M1.
SELECTION-SCREEN END OF BLOCK BL01.
SELECTION-SCREEN BEGIN OF BLOCK BL02 WITH FRAME TITLE TEXT-001.
SELECTION-SCREEN BEGIN OF LINE.
SELECTION-SCREEN COMMENT (79) text-004.
SELECTION-SCREEN END OF LINE.
SELECTION-SCREEN BEGIN OF LINE.
SELECTION-SCREEN COMMENT (79) text-005.
SELECTION-SCREEN END OF LINE.
SELECTION-SCREEN END OF BLOCK BL02.
*&---------------------------------------------------------------------*
*& Event AT INITIALIZATION
*&---------------------------------------------------------------------*
INITIALIZATION.
*&---------------------------------------------------------------------*
*& Event AT SELECTION-SCREEN
*&---------------------------------------------------------------------*
AT SELECTION-SCREEN.
AT SELECTION-SCREEN OUTPUT.
LOOP AT SCREEN.
IF ( P_RB_1 = ''X'' OR P_RB_2 = ''X'' ) AND ( SCREEN-GROUP1 = ''M2'' OR SCREEN-GROUP1 = ''M3'' OR SCREEN-GROUP1 = ''M4'').
SCREEN-ACTIVE = ''0''.
ENDIF.
IF ( P_RB_2 = ''X'' ) AND SCREEN-GROUP1 = ''M1''.
SCREEN-ACTIVE = ''0''.
ENDIF.
MODIFY SCREEN.
ENDLOOP.
*********************************************************************
* AT SELECTION-SCREEN
*********************************************************************
AT SELECTION-SCREEN ON VALUE-REQUEST FOR P_FILE.
PERFORM FRM_OPEN_FILE.
*----------------------------------------------------------------------*
* Event Occurs After The Selection Screen Has Been Processed
*----------------------------------------------------------------------*
START-OF-SELECTION.
IF P_RB_1 = ''X''.
PERFORM FRM_AUTH_CHECK.
PERFORM FRM_CHECK.
* PERFORM FRM_ALV.
PERFORM FRM_DOWNLOAD.
ENDIF.
IF P_RB_2 = ''X''.
L_NAME-RELID = ''MI''.
L_NAME-OBJID = ''Z_BOM_TEMPLATE''.
PERFORM GET_TEMPLATE CHANGING L_NAME L_FULLPATH.
ENDIF.
"ALV
*----------------------------------------------------------------------*
* The Last Of The Events Called By The Runtime Environment To Occur
*----------------------------------------------------------------------*
END-OF-SELECTION.
*&---------------------------------------------------------------------*
*& Form frm_open_file
*&---------------------------------------------------------------------*
* text
*----------------------------------------------------------------------*
FORM FRM_OPEN_FILE.
CALL FUNCTION ''WS_FILENAME_GET''
EXPORTING
DEF_FILENAME = SPACE
DEF_PATH = P_FILE
MASK = TEXT-001
MODE = ''O''
IMPORTING
FILENAME = P_FILE
EXCEPTIONS
SELECTION_CANCEL = 0.
ENDFORM. "frm_open_file
*&---------------------------------------------------------------------*
*& Form frm_auth_check
*&---------------------------------------------------------------------*
* text
*----------------------------------------------------------------------*
FORM FRM_AUTH_CHECK.
* DATA: LV_BUKRS TYPE STRING.
* DATA: VKORG TYPE TVKO-VKORG.
*
* SELECT SINGLE VKORG
* FROM TVKO
* INTO VKORG
* WHERE BUKRS = P_BUKRS.
*
* AUTHORITY-CHECK OBJECT ''V_VBAK_VKO''
* ID ''VKORG'' FIELD VKORG.
* IF SY-SUBRC NE 0.
* CONCATENATE ''没有权限对公司'' VKORG ''进行操作!'' INTO LV_BUKRS.
* MESSAGE LV_BUKRS TYPE ''S'' disPLAY LIKE ''E'' .
* LEAVE LIST-PROCESSING.
* ENDIF.
ENDFORM. "frm_auth_check
*&---------------------------------------------------------------------*
*& Form frm_check
*&---------------------------------------------------------------------*
* text
*----------------------------------------------------------------------*
FORM FRM_CHECK.
PERFORM FRM_TIDY.
PERFORM FRM_SAVE.
ENDFORM. "frm_check
*&---------------------------------------------------------------------*
*& Form frm_tidy
*&---------------------------------------------------------------------*
* text
*----------------------------------------------------------------------*
FORM FRM_TIDY.
*从已知文件名读入内表
CALL FUNCTION ''KCD_EXCEL_OLE_TO_INT_CONVERT''
EXPORTING
FILENAME = P_FILE
I_BEGIN_COL = 1
I_BEGIN_ROW = 1
I_END_COL = 20
I_END_ROW = 65535
TABLES
INTERN = GIT_EXCEL[]
EXCEPTIONS
INCONSISTENT_ParaMETERS = 1
UPLOAD_OLE = 2
OTHERS = 3.
IF SY-SUBRC <> 0.
MESSAGE ''打开文件错误,请检查文件,确保关闭文件!'' TYPE ''E''.
STOP.
ENDIF.
REFRESH IT_UPLOAD.
CLEAR IT_UPLOAD.
LOOP AT GIT_EXCEL.
CASE GIT_EXCEL-COL.
WHEN ''001''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-WERKS.
WHEN ''002''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-MATNR.
WHEN ''003''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-BMENG.
WHEN ''004''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-STLAL.
WHEN ''005''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-POSNR.
WHEN ''006''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-IDNRK.
WHEN ''007''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-MENGE.
WHEN ''008''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-MEINS.
WHEN ''009''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-AUSCH.
WHEN ''010''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-KZKUP.
WHEN ''011''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-LGORT.
WHEN ''012''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-VERTI.
WHEN ''013''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-ALPGR.
WHEN ''014''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-ALPRF.
WHEN ''015''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-ALPST.
WHEN ''016''.
WRITE GIT_EXCEL-VALUE TO IT_UPLOAD-EWAHR.
ENDCASE.
AT END OF ROW.
APPEND IT_UPLOAD.
CLEAR IT_UPLOAD.
ENDAT.
ENDLOOP.
* 删除表头
DELETE IT_UPLOAD INDEX 1.
ENDFORM. "frm_tidy
*&---------------------------------------------------------------------*
*& Form frm_save
*&---------------------------------------------------------------------*
* text
*----------------------------------------------------------------------*
FORM FRM_SAVE.
DATA: L_BOM_HEADER LIKE BICSK,
L_GROUP_DATA LIKE BGR00,
L_MsgiD LIKE T100-ARBGB,
L_MSGNO LIKE T100-MSGNR,
P_MSGNO LIKE SY-MSGNO,
L_MSGTY LIKE SY-MSGTY,
L_MSGV1 LIKE SY-MSGV1,
L_MSGV2 LIKE SY-MSGV2,
L_MSGV3 LIKE SY-MSGV3,
L_MSGV4 LIKE SY-MSGV4,
L_POSNR LIKE BICSP-POSNR.
DATA: LT_BOM_ITEM LIKE BICSP OCCURS 0 WITH HEADER LINE,
LT_SUB_ITEM LIKE BICSU OCCURS 0 WITH HEADER LINE.
DATA: GS_MSG LIKE MESSAGE,
L_ERROR(1).
SORT IT_UPLOAD BY WERKS MATNR.
CLEAR IT_OUT.
REFRESH IT_OUT.
LOOP AT IT_UPLOAD.
CLEAR WA_IT_UPLOAD.
MOVE-CORRESPONDING IT_UPLOAD TO WA_IT_UPLOAD.
AT NEW MATNR.
* 创建之前先删除
CALL FUNCTION ''CSAP_MAT_BOM_DELETE''
* DESTINATION V_RFC_DES
EXPORTING
MATERIAL = WA_IT_UPLOAD-MATNR
PLANT = WA_IT_UPLOAD-WERKS
ALTERNATIVE = WA_IT_UPLOAD-STLAL
BOM_USAGE = ''1''
FL_NO_CHANGE_DOC = ''X''
FL_COMMIT_AND_WAIT = ''X''
EXCEPTIONS
ERROR = 1
OTHERS = 2.
CLEAR L_BOM_HEADER.
CLEAR LT_BOM_ITEM.
REFRESH LT_BOM_ITEM.
L_BOM_HEADER-TCODE = ''CS01''.
L_BOM_HEADER-WERKS = WA_IT_UPLOAD-WERKS.
L_BOM_HEADER-MATNR = WA_IT_UPLOAD-MATNR.
L_BOM_HEADER-BMENG = WA_IT_UPLOAD-BMENG.
L_BOM_HEADER-STLAL = WA_IT_UPLOAD-STLAL.
L_BOM_HEADER-STLAN = ''1''.
L_BOM_HEADER-DATUV = SY-DATUM.
ENDAT.
LT_BOM_ITEM-POSTP = ''L''.
LT_BOM_ITEM-SANKA = ''X''.
LT_BOM_ITEM-XLINE = ''1''.
LT_BOM_ITEM-POSNR = WA_IT_UPLOAD-POSNR.
LT_BOM_ITEM-IDNRK = WA_IT_UPLOAD-IDNRK.
LT_BOM_ITEM-MENGE = WA_IT_UPLOAD-MENGE.
LT_BOM_ITEM-MEINS = WA_IT_UPLOAD-MEINS.
LT_BOM_ITEM-AUSCH = WA_IT_UPLOAD-AUSCH.
LT_BOM_ITEM-KZKUP = WA_IT_UPLOAD-KZKUP.
LT_BOM_ITEM-LGORT = WA_IT_UPLOAD-LGORT.
LT_BOM_ITEM-VERTI = WA_IT_UPLOAD-VERTI.
LT_BOM_ITEM-ALPGR = WA_IT_UPLOAD-ALPGR.
LT_BOM_ITEM-ALPRF = WA_IT_UPLOAD-ALPRF.
LT_BOM_ITEM-ALPST = WA_IT_UPLOAD-ALPST.
LT_BOM_ITEM-EWAHR = WA_IT_UPLOAD-EWAHR.
APPEND LT_BOM_ITEM.
CLEAR LT_BOM_ITEM.
AT END OF MATNR.
CALL FUNCTION ''CS_BI_BOM_CREATE_BATCH_INPUT1''
EXPORTING
BOM_HEADER = L_BOM_HEADER
* CLOSE_GROUP = ''X''
COMMIT_WORK = ''X''
GROUP_DATA = L_GROUP_DATA
* NEW_GROUP = ''X''
TCODE_MODE = ''E''
TCODE_UPDATE = ''S''
IMPORTING
MsgiD = L_MsgiD
MSGNO = L_MSGNO
MSGTY = L_MSGTY
MSGV1 = L_MSGV1
MSGV2 = L_MSGV2
MSGV3 = L_MSGV3
MSGV4 = L_MSGV4
TABLES
BOM_ITEM = LT_BOM_ITEM
BOM_SUB_ITEM = LT_SUB_ITEM.
L_MsgiD = L_MsgiD.
P_MSGNO = L_MSGNO.
* **get message string
CALL FUNCTION ''WRITE_MESSAGE''
EXPORTING
MsgiD = L_MsgiD
MSGNO = P_MSGNO
MSGTY = L_MSGTY
MSGV1 = L_MSGV1
MSGV2 = L_MSGV2
MSGV3 = L_MSGV3
MSGV4 = L_MSGV4
MSGV5 = SPACE
IMPORTING
ERROR = L_ERROR
MESSG = GS_MSG
EXCEPTIONS
OTHERS = 1.
IT_OUT-WERKS = WA_IT_UPLOAD-WERKS.
IT_OUT-MATNR = WA_IT_UPLOAD-MATNR.
IT_OUT-BMENG = WA_IT_UPLOAD-BMENG.
IT_OUT-STLAL = WA_IT_UPLOAD-STLAL.
IF GS_MSG-MSGTY = ''E'' OR NOT ( L_ERROR IS INITIAL ).
IT_OUT-FLAG = ''E''.
ELSE.
IT_OUT-FLAG = ''S''.
ENDIF.
IT_OUT-MESSAGE = GS_MSG-MSGTX.
APPEND IT_OUT.
CLEAR IT_OUT.
ENDAT.
ENDLOOP.
ENDFORM. "frm_save
*&---------------------------------------------------------------------*
*& Form GET_TEMPLATE
*&---------------------------------------------------------------------*
* text
*----------------------------------------------------------------------*
* <--P_L_NAME text
* <--P_L_FULLPATH text
*----------------------------------------------------------------------*
FORM GET_TEMPLATE CHANGING NAME FULLPATH.
DATA: TITLE TYPE STRING.
DATA: MIME LIKE W3MIME OCCURS 10.
DATA: FILENAME TYPE STRING.
DATA: PATH TYPE STRING.
TITLE = ''BOM批量创建模版''.
CALL FUNCTION ''WWWDATA_IMPORT''
EXPORTING
KEY = NAME
TABLES
MIME = MIME
EXCEPTIONS
WRONG_OBJECT_TYPE = 1
IMPORT_ERROR = 2
OTHERS = 3.
CALL METHOD CL_GUI_FRONTEND_SERVICES=>FILE_SAVE_DIALOG
EXPORTING
WINDOW_TITLE = TITLE
DEFAULT_EXTENSION = ''xls''
DEFAULT_FILE_NAME = TITLE
FILE_FILTER = ''(电子表格EXCEL)''
CHANGING
FILENAME = FILENAME
PATH = PATH
FULLPATH = FULLPATH
EXCEPTIONS
CNTL_ERROR = 1
ERROR_NO_GUI = 2
NOT_SUPPORTED_BY_GUI = 3
OTHERS = 4.
IF SY-SUBRC <> 0.
STOP.
ENDIF.
CALL FUNCTION ''GUI_DOWNLOAD''
EXPORTING
FILENAME = FULLPATH
FILETYPE = ''BIN''
TABLES
DATA_TAB = MIME.
ENDFORM. " GET_TEMPLATE
*&---------------------------------------------------------------------*
*& Form FRM_DOWNLOAD
*&---------------------------------------------------------------------*
* text
*----------------------------------------------------------------------*
* --> p1 text
* <-- p2 text
*----------------------------------------------------------------------*
FORM FRM_DOWNLOAD .
CALL FUNCTION ''GUI_DOWNLOAD''
EXPORTING
* BIN_FILESIZE =
FILENAME = ''C:/BOM批量创建程序结果表.TXT''
FILETYPE = ''ASC''
APPEND = '' ''
* WRITE_FIELD_SEParaTOR = '' ''
* HEADER = ''00''
* Trunc_TRAILING_BLANKS = '' ''
* WRITE_LF = ''X''
* COL_SELECT = '' ''
* COL_SELECT_MASK = '' ''
* DAT_MODE = '' ''
* CONFIRM_OVERWRITE = '' ''
* NO_AUTH_CHECK = '' ''
* CODEPAGE = '' ''
* IGnorE_CERR = ABAP_TRUE
* REPLACEMENT = ''#''
* WRITE_BOM = '' ''
* Trunc_TRAILING_BLANKS_EOL = ''X''
* WK1_N_FORMAT = '' ''
* WK1_N_SIZE = '' ''
* WK1_T_FORMAT = '' ''
* WK1_T_SIZE = '' ''
* IMPORTING
* FILELENGTH =
TABLES
DATA_TAB = IT_OUT
* FIELDNAMES =
* EXCEPTIONS
* FILE_WRITE_ERROR = 1
* NO_BATCH = 2
* GUI_REFUSE_FILETRANSFER = 3
* INVALID_TYPE = 4
* NO_AUTHORITY = 5
* UNKNowN_ERROR = 6
* HEADER_NOT_ALLOWED = 7
* SEParaTOR_NOT_ALLOWED = 8
* FILESIZE_NOT_ALLOWED = 9
* HEADER_TOO_LONG = 10
* DP_ERROR_CREATE = 11
* DP_ERROR_SEND = 12
* DP_ERROR_WRITE = 13
* UNKNowN_DP_ERROR = 14
* ACCESS_DENIED = 15
* DP_OUT_OF_MEMORY = 16
* disK_FULL = 17
* DP_TIMEOUT = 18
* FILE_NOT_FOUND = 19
* DATAPROVIDER_EXCEPTION = 20
* CONTROL_FLUSH_ERROR = 21
* OTHERS = 22
.
IF SY-SUBRC <> 0.
* MESSAGE ID SY-MsgiD TYPE SY-MSGTY NUMBER SY-MSGNO
* WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.
WRITE:''数据成功保存到C盘根目录下,请查看!''.
ENDFORM. " FRM_DOWNLOAD
android.view.inputmethod.InputConnectionWrapper的实例源码
public InputConnection createInputConnection(InputConnection base) { return base == null ? null : new InputConnectionWrapper(base,true) { @Override public boolean sendKeyEvent(KeyEvent event) { // Todo: this Could be improved by working even when we are not empty. // The behavior should be 'delete isLast character from mPre'. // In that case,we should check also that getSelectionStart() == 0. if (!isFirst() && mView.getText().length() == 0 && event.getAction() == KeyEvent.ACTION_DOWN && event.getKeyCode() == KeyEvent.KEYCODE_DEL) { removeFromChain(mView); return false; } return super.sendKeyEvent(event); } }; }
@VisibleForTesting public InputConnectionWrapper getInputConnection() { return mInputConnection; }
attr 'output_shapes' 为 0 的长度必须至少为 1
如何解决attr ''output_shapes'' 为 0 的长度必须至少为 1?
每当我尝试将字符串列表转换为 tf.Dataset 对象时,它都会向我输出此错误。
tensorflow.python.framework.errors_impl.InvalidArgumentError: Length for attr ''output_shapes'' of 0 must be at least minimum 1
; NodeDef: {{node ParallelMapDatasetV2}}; Op<name=ParallelMapDatasetV2; signature=input_dataset:variant,other_arguments:,num_parallel_calls:int64 -> handle:variant; attr=f:func; attr=Targuments:list(type),min=0; attr=output_types:list(type),min=1; attr=output_shapes:list(shape),min=1; attr=use_inter_op_parallelism:bool,default=true; attr=deterministic:string,default="default"; attr=preserve_cardinality:bool,default=false> [Op:ParallelMapDatasetV2]
代码是:
just_train_filenames = tf.ragged.constant([batch[0] for batch in train_list])
tf_train_ds = tf.data.Dataset.from_generator(
lambda: just_train_filenames,output_signature=(tf.Tensor(shape=(1,None),tf.string))
)
解决方法
Dataset.map 函数也有同样的问题。 你的 lambda 函数需要有一个返回值。
在这种情况下,output_shapes 是 lambda 函数的 output_shape,它是 0,因为该函数没有返回值。
在 from_generator 的情况下,lambda 需要返回一个具有迭代器的对象。
来自 tensorflow 文档:https://www.tensorflow.org/api_docs/python/tf/data/Dataset#from_generator
生成器参数必须是一个可调用对象,该对象返回支持 iter() 协议的对象(例如生成器函数)。
生成器生成的元素必须与给定的 output_signature 参数或使用给定的 output_types 和(可选) output_shapes 参数,以指定的为准。
AttributeError:'LogisticRegressionGD'对象没有属性'net_input'为什么会出现此错误?我定义了net_input
如何解决AttributeError:''LogisticRegressionGD''对象没有属性''net_input''为什么会出现此错误?我定义了net_input?
from sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt
# Assigning the petal length and petal width of the 150 flower samples to Matrix X
# Class labels of the flower to vector y
iris = datasets.load_iris()
X = iris.data[:,[2,3]]
y = iris.target
print(''Class labels:'',np.unique(y))
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=1,stratify=y)
print(''Labels counts in y:'',np.bincount(y))
print(''Labels counts in y_train:'',np.bincount(y_train))
print (''Labels counts in y_test:'',np.bincount(y_test))
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
class LogisticRegressionGD(object):
"""Logistic Regression Classifier using gradient descent.
Parameters
------------
eta : float
Learning rate (between 0.0 and 1.0)
n_iter : int
Passes over the training dataset
random_state : int
Random number generator seed for random weight initialization
Attributes
------------
w_ : 1d-array
Weights after fitting.
cost_ : list
Sum-of-squares cost function value in each epoch.
"""
def __init__(self,eta=0.05,n_iter=100,random_state=1):
self.eta = eta
self.n_iter = n_iter
self.random_state = random_state
def fit(self,X,y):
""" Fit training data.
Parameters
------------
X : {array-like},shape = [n_samples,n_features]
Training vectors,where n_samples is the number of samples and
n_features is the number of features.
y : array-like,shape = [n_samples]
Target values
Returns
------------
self : object
"""
rgen = np.random.RandomState(self.random_state)
self.w_ = rgen.normal(loc=0.0,scale=0.01,size=1 + X.shape[1])
self.cost_ = []
for i in range(self.n_iter):
net_input = self.net_input(X)
output = self.activation(net_input)
errors = (y - output)
self.w_[1:] += self.eta * X.T.dot(errors)
self.w_[0] += self.eta * errors.sum()
# note that we compute the logistic ''cost'' Now
# instead of the sum of the squared errors cost
cost = (-y.dot(np.log(output)) - ((1 - y).dot(np.log(1 - output))))
self.cost_.append(cost)
return self
def net_input(self,X):
"""Calculate net input"""
return np.dot(X,self.w_[1:]) + self.w_[0]
def activation(self,z):
"""Compute logistic sigmoid activation"""
return 1. / (1. + (np.clip(z,-250,250)))
def predict(self,X):
"""Return class label after unit step"""
return np.where(self.net_input(X) >= 0.0,1,0)
# equivalent to:
# return np.where(self.activation(self.net_input(X)) >= 0.5,0)
# Considering only Iris-setosa and Iris-versicolor (Classes 0 and 1)
X_train_01_subset = X_train[(y_train == 0) | (y_train == 1)]
y_train_01_subset = y_train[(y_train == 0) | (y_train == 1)]
lrgd = LogisticRegressionGD(eta=0.05,n_iter=1000,random_state=1)
lrgd.fit(X_train_01_subset,y_train_01_subset)
plot_decision_regions(X=X_train_01_subset,y=y_train_01_subset,classifier=lrgd)
plt.xlabel(''petal length [standardized]'')
plt.ylabel(''petal width [standardized]'')
plt.legend(loc=''upper left'')
plt.show()
运行该命令后,出现以下错误消息:
Traceback (most recent call last):
File "c:/Users/Desfios 5/Desktop/Python/Ch3LogisticRegressionGD.py",line 102,in <module>
lrgd.fit(X_train_01_subset,y_train_01_subset)
File "c:/Users/Desfios 5/Desktop/Python/Ch3LogisticRegressionGD.py",line 72,in fit
net_input = self.net_input(X)
AttributeError: ''LogisticRegressionGD'' object has no attribute ''net_input''
我看着其他问类似问题的人,发现通常由于未定义属性而出现此错误消息。但是,第72行-net_input = self.net_input(X)定义了net_input吗?
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)
今天关于如何在Keras的LSTM中修复以下错误?如果RNN是有状态的,请指定`batch_input_shape`的讲解已经结束,谢谢您的阅读,如果想了解更多关于ABAP中BOM批导程序,以及函数CS_BI_BOM_CREATE_BATCH_INPUT1的用法、android.view.inputmethod.InputConnectionWrapper的实例源码、attr 'output_shapes' 为 0 的长度必须至少为 1、AttributeError:'LogisticRegressionGD'对象没有属性'net_input'为什么会出现此错误?我定义了net_input的相关知识,请在本站搜索。
本文标签: