本文的目的是介绍binary,varbinary,image的区别的详细情况,特别关注binary和varbinary的相关信息。我们将通过专业的研究、有关数据的分析等多种方式,为您呈现一个全面的了解
本文的目的是介绍binary,varbinary,image的区别的详细情况,特别关注binary和varbinary的相关信息。我们将通过专业的研究、有关数据的分析等多种方式,为您呈现一个全面的了解binary,varbinary,image的区别的机会,同时也不会遗漏关于.net – SQL Server Varbinary(max):从varbinary字段中选择一个字节子集、c# – 如何将图像存储到varbinary(max)列?、C#二进制读写BinaryReader、BinaryWriter、BinaryFormatter、edu.wpi.first.wpilibj.image.BinaryImage的实例源码的知识。
本文目录一览:- binary,varbinary,image的区别(binary和varbinary)
- .net – SQL Server Varbinary(max):从varbinary字段中选择一个字节子集
- c# – 如何将图像存储到varbinary(max)列?
- C#二进制读写BinaryReader、BinaryWriter、BinaryFormatter
- edu.wpi.first.wpilibj.image.BinaryImage的实例源码
binary,varbinary,image的区别(binary和varbinary)
binary
固定长度的二进制数据,其最大长度为 8,000 个字节。
varbinary
可变长度的二进制数据,其最大长度为 8,000 个字节。
image
可变长度的二进制数据,其最大长度为 2^31 - 1 (2,147,483,647) 个字节
在 Microsoft sql Server 的未来版本中将删除 ntext、text 和 image 数据类型。请避免在新开发工作中使用这些数据类型,
并考虑修改当前使用这些数据类型的应用程序。请改用 nvarchar(max)、varchar(max) 和 varbinary(max)。
ntext 长度可变的 Unicode 数据,最大长度为 2^30 - 1 (1,073,741,823) 个字符。存储大小是所输入字符个数的两倍(以字节为单位)。ntext 的 sql 2003 同义词为 national text。text 服务器代码页中长度可变的非 Unicode 数据,最大长度为 2^31-1 (2,647) 个字符。当服务器代码页使用双字节字符时,存储仍是 2,647 字节。根据字符串,存储大小可能小于 2,647 字节。image 长度可变的二进制数据,从 0 到 2^31-1 (2,647) 个字节。--------------------- 作者:fox123871 来源:CSDN 原文:https://blog.csdn.net/fox123871/article/details/7667154 版权声明:本文为博主原创文章,转载请附上博文链接!
.net – SQL Server Varbinary(max):从varbinary字段中选择一个字节子集
当向数据库中写入数据时,T-sql中有可用的VarBinary.Write()函数,允许字节递增地写入字段,但是似乎没有类似的功能可用于读取数据.
我知道.Net中的DataReader.GetBytes()方法,它将只选择您要求的字节,但是会带来性能开销吗?即,sqlserver中的select将会读取数据库中的所有字节,然后给出getBytes()方法所有这些字节,以便从它们请求的字节的子集?
感谢任何帮助.
解决方法
c# – 如何将图像存储到varbinary(max)列?
Implicit conversion from data type nvarchar to varbinary(max) is not
allowed. Use the CONVERT function to run this query
在数据库中,Image列的数据类型是Varbinary(MAX).
编辑
代码解除了评论
paramaters.Add(getParam("@imageFilePath",DbType.AnsiString,imageFilePath));
解决方法
// Old fashioned way public static byte[] ReadFile(string filePath) { byte[] buffer; FileStream fileStream = new FileStream(filePath,FileMode.Open,FileAccess.Read); try { int length = (int)fileStream.Length; // get file length buffer = new byte[length]; // create buffer int count; // actual number of bytes read int sum = 0; // total number of bytes read // read until Read method returns 0 (end of the stream has been reached) while ((count = fileStream.Read(buffer,sum,length - sum)) > 0) sum += count; // sum is a buffer offset for next reading } finally { fileStream.Close(); } return buffer; }
要么
// Thanks Magnus! byte[] data = System.IO.File.ReadAllBytes(filePath);
然后使用此保存图像数据(我使用的图像类“实例”包含我在instance.Data中的图像信息和字节数组):
using(sqlCommand cm = new sqlCommand("SaveImage",connection,transaction)){ cm.CommandType = CommandType.StoredProcedure; cm.Parameters.Add(new sqlParameter("@Id",sqlDbType.Int,ParameterDirection.InputOutput,false,10,"Id",DaTarowVersion.Current,(sqlInt32)instance.Id)); cm.Parameters.Add(new sqlParameter("@Title",sqlDbType.NVarChar,50,ParameterDirection.Input,"Title",(sqlString)instance.Title)); if (instance.Data.Length > 0) { cm.Parameters.Add(new sqlParameter("@Data",sqlDbType.VarBinary,instance.Data.Length,"Data",(sqlBinary)instance.Data)); } else { cm.Parameters.Add(new sqlParameter("@Data",dbnull.Value)); } cm.ExecuteNonQuery(); )
这是一个示例存储过程:
CREATE PROCEDURE SaveImage ( @Id int OUTPUT,@Title nvarchar(50),@Data varbinary(MAX) ) AS SET NOCOUNT ON SET XACT_ABORT ON IF @Id IS NULL OR @Id <= 0 BEGIN SELECT @Id = ISNULL(MAX([Id]),0) + 1 FROM [dbo].[Images] END INSERT INTO [dbo].[Images] ( [Id],[Title],[Data] ) VALUES ( @Id,@Title,@Data )
C#二进制读写BinaryReader、BinaryWriter、BinaryFormatter
一、二进制读写类:
1、BinaryReader/BinaryWriter:二进制读写
- BinaryReader:用特定的编码将基元数据类型读作二进制值。
- BinaryWriter:以二进制形式将基元类型写入流,并支持用特定的编码写入字符串。
2、XmlReader/XmlWriter :XML读写
见:C#使⽤XmlReader和XmlWriter操作XML⽂件
二、BinaryReader/BinaryWriter
读写流的基元数据类型。可以操作图像、压缩文件等二进制文件。也可以是MemoryStream等。
不需要一个字节一个字节进行操作,可以是2个、4个、或8个字节这样操作。
可以将一个字符或数字按指定数量的字节进行写入。
1、写入:
using (BinaryWriter writer = new BinaryWriter(File.Open(fileName, FileMode.Create))) { writer.Write(1.250F); writer.Write(@"c:\Temp"); writer.Write(10); writer.Write(true); }
Response.BinaryWrite()方法输出二进制图像
FileStream fs = new FileStream(Server.MapPath("未命名.jpg"), FileMode.Open);//将图片文件存在文件流中 long fslength = fs.Length;//流长度 byte[] b=new byte[(int)fslength];//定义二进制数组 fs.Read(b, 0, (int)fslength);//将流中字节写入二进制数组中 fs.Close();//关闭流 Response.ContentType = "image/jpg";//没有这个会出现乱码 Response.BinaryWrite(b);//将图片输出在页面
2、读取:
每次读取都回提升流中的当前位置相应数量的字节。
下面的代码示例演示了如何存储和检索文件中的应用程序设置。
const string fileName = "AppSettings.dat"; float aspectRatio; string tempDirectory; int autoSaveTime; bool showStatusBar; if (File.Exists(fileName)) { using (BinaryReader reader = new BinaryReader(File.Open(fileName, FileMode.Open))) { aspectRatio = reader.ReadSingle(); tempDirectory = reader.ReadString(); autoSaveTime = reader.ReadInt32(); showStatusBar = reader.ReadBoolean(); } Console.WriteLine("Aspect ratio set to: " + aspectRatio); Console.WriteLine("Temp directory is: " + tempDirectory); Console.WriteLine("Auto save time set to: " + autoSaveTime); Console.WriteLine("Show status bar: " + showStatusBar); }
BinaryReader读取图片:
using (FileStream fs = new FileStream("1.jpg", FileMode.Open, FileAccess.Read)) { //将图片以文件流的形式进行保存 using (BinaryReader br = new BinaryReader(fs)) { byte[] imgBytesIn = br.ReadBytes((int)fs.Length); //将流读入到字节数组中 br.Close(); } }
三、以二进制格式序列化对象BinaryFormatter
1、SoapFormatter(用于HTTP中)和BinaryFormatter(用于TCP中)类实现了IFormatter接口 (由继承IRemotingFormatter,支持远程过程调用 (Rpc))
- Deserialize(Stream) 反序列化所提供流中的数据并重新组成对象图形。
- Serialize(Stream, Object) 将对象或具有给定根的对象图形序列化为所提供的流。
XML序列化见:https://www.jb51.net/article/250477.htm
2、举例:
[Serializable] public class Product //实体类 { public long Id; [NonSerialized]//标识不序列化此成员Name public string Name; public Product(long Id, string Name) { this.Id = Id; this.Name = Name; } } static void Main() { //序列化(对象保存到文件) List<Product> Products = new List<Product> { new Product(1,"a"),new Product(2,"b") }; FileStream fs = new FileStream("DataFile.dat", FileMode.Create); IFormatter formatter = new BinaryFormatter(); formatter.Serialize(fs, Products); fs.Close(); //反序列化(文件内容转成对象) FileStream fs1 = new FileStream("DataFile.dat", FileMode.Open); BinaryFormatter formatter1 = new BinaryFormatter(); List<Product> addresses = (List<Product>)formatter1.Deserialize(fs1); fs1.Close(); foreach (Product de in addresses) { Console.WriteLine("{0} lives at {1}.", de.Id, de.Name); } }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
- C# BinaryReader实现读取二进制文件
- C# 进制转换的实现(二进制、十六进制、十进制互转)
- C#中图片、二进制与字符串的相互转换方法
- C#实现文件与二进制互转并存入数据库
- C#读取二进制文件方法分析
- c#二进制逆序方法详解
- C# 图片与二进制转换的简单实例
- C# 向二进制文件进行读写的操作方法
- c# 以二进制读取文本文件
edu.wpi.first.wpilibj.image.BinaryImage的实例源码
/** * Computes a score (0-100) comparing the aspect ratio to the ideal aspect * ratio for the target. This method uses the equivalent rectangle sides to * determine aspect ratio as it performs better as the target gets skewed by * moving to the left or right. The equivalent rectangle is the rectangle * with sides x and y where particle area= x*y and particle perimeter= 2x+2y * * @param image The image containing the particle to score,needed to * performa additional measurements * @param report The Particle Analysis Report for the particle,used for the * width,height,and particle number * @param outer Indicates whether the particle aspect ratio should be * compared to the ratio for the inner target or the outer * @return The aspect ratio score (0-100) */ public static double scoreAspectRatio(BinaryImage image,ParticleAnalysisReport report,int particleNumber,boolean outer) throws NIVisionException { double rectLong,rectShort,aspectRatio,idealAspectRatio; rectLong = NIVision.MeasureParticle(image.image,particleNumber,false,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_LONG_SIDE); rectShort = NIVision.MeasureParticle(image.image,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_SHORT_SIDE); //idealAspectRatio = outer ? (62/29) : (62/20); //Dimensions of goal opening + 4 inches on all 4 sides for reflective tape idealAspectRatio = outer ? (43 / 32) : (39 / 28); //Divide width by height to measure aspect ratio aspectRatio = report.boundingRectWidth / (double) report.boundingRectHeight; /*if(report.boundingRectWidth > report.boundingRectHeight){ //particle is wider than it is tall,divide long by short aspectRatio = 100*(1-Math.abs((1-((rectLong/rectShort)/idealAspectRatio)))); } else { //particle is taller than it is wide,divide short by long aspectRatio = 100*(1-Math.abs((1-((rectShort/rectLong)/idealAspectRatio)))); }*/ return aspectRatio; //return (Math.max(0,Math.min(aspectRatio,100.0))); //force to be in range 0-100 }
/** * Computes a score based on the match between a template profile and the * particle profile in the X direction. This method uses the the column * averages and the profile defined at the top of the sample to look for the * solid vertical edges with a hollow center. * * @param image The image to use,should be the image before the convex hull * is performed * @param report The Particle Analysis Report for the particle * * @return The X Edge score (0-100) */ public static double scoreXEdge(BinaryImage image,ParticleAnalysisReport report) throws NIVisionException { double total = 0; Linearaverages averages; NIVision.Rect rect = new NIVision.Rect(report.boundingRectTop,report.boundingRectLeft,report.boundingRectHeight,report.boundingRectWidth); averages = NIVision.getLinearaverages(image.image,Linearaverages.LinearaveragesMode.IMAQ_COLUMN_AVERAGES,rect); float columnAverages[] = averages.getColumnAverages(); for (int i = 0; i < (columnAverages.length); i++) { if (xMin[(i * (XMINSIZE - 1) / columnAverages.length)] < columnAverages[i] && columnAverages[i] < xMax[i * (XMAXSIZE - 1) / columnAverages.length]) { totaL++; } } total = 100 * total / (columnAverages.length); return total; }
/** * Computes a score based on the match between a template profile and the * particle profile in the Y direction. This method uses the the row * averages and the profile defined at the top of the sample to look for the * solid horizontal edges with a hollow center * * @param image The image to use,should be the image before the convex hull * is performed * @param report The Particle Analysis Report for the particle * * @return The Y Edge score (0-100) * */ public static double scoreYEdge(BinaryImage image,Linearaverages.LinearaveragesMode.IMAQ_ROW_AVERAGES,rect); float rowAverages[] = averages.getRowAverages(); for (int i = 0; i < (rowAverages.length); i++) { if (yMin[(i * (YMINSIZE - 1) / rowAverages.length)] < rowAverages[i] && rowAverages[i] < yMax[i * (YMAXSIZE - 1) / rowAverages.length]) { totaL++; } } total = 100 * total / (rowAverages.length); return total; }
/** * Computes a score (0-100) comparing the aspect ratio to the ideal aspect * ratio for the target. This method uses the equivalent rectangle sides to * determine aspect ratio as it performs better as the target gets skewed by * moving to the left or right. The equivalent rectangle is the rectangle * with sides x and y where particle area,xy and particle perimeter,2x+2y * * @param image The image containing the particle to score,needed to * perform additional measurements * @param report The Particle Analysis Report for the particle,and particle number * @param outer Indicates whether the particle aspect ratio should be * compared to the ratio for the inner target or the outer * @return The aspect ratio score (0-100) */ private double scoreAspectRatio(BinaryImage image,ParticleAnalysisReport report,boolean vertical) throws NIVisionException { double rectLong,MeasurementType.IMAQ_MT_EQUIVALENT_RECT_LONG_SIDE); rectShort = NIVision.MeasureParticle(image.image,MeasurementType.IMAQ_MT_EQUIVALENT_RECT_SHORT_SIDE); idealAspectRatio = vertical ? (4.0 / 32) : (23.5 / 4); if (report.boundingRectWidth > report.boundingRectHeight) { aspectRatio = ratioToscore((rectLong / rectShort)/idealAspectRatio); } else { aspectRatio = ratioToscore((rectShort / rectLong)/idealAspectRatio); } return aspectRatio; }
public double scoreAspectRatio(BinaryImage image,boolean vertical) throws NIVisionException { double rectLong,idealAspectRatio; rectLong = NIVision.MeasureParticle(image.image,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_LONG_SIDE); rectShort = NIVision.MeasureParticle(image.image,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_SHORT_SIDE); idealAspectRatio = vertical ? (4.0/32) : (23.5/4); //Vertical reflector 4" wide x 32" tall,horizontal 23.5" wide x 4" tall //Divide width by height to measure aspect ratio if(report.boundingRectWidth > report.boundingRectHeight){ //particle is wider than it is tall,divide long by short aspectRatio = ratioToscore((rectLong/rectShort)/idealAspectRatio); } else { //particle is taller than it is wide,divide short by long aspectRatio = ratioToscore((rectShort/rectLong)/idealAspectRatio); } return aspectRatio; }
/** * Computes a score (0-100) comparing the aspect ratio to the ideal aspect * ratio for the target. This method uses the equivalent rectangle sides to * determine aspect ratio as it performs better as the target gets skewed by * moving to the left or right. The equivalent rectangle is the rectangle * with sides x and y where particle area= x*y and particle perimeter= 2x+2y * * @param image The image containing the particle to score,and particle number * @param outer Indicates whether the particle aspect ratio should be * compared to the ratio for the inner target or the outer * @return The aspect ratio score (0-100) */ private static double scoreAspectRatio(BinaryImage image,boolean vertical) throws NIVisionException { double rectLong,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_SHORT_SIDE); idealAspectRatio = vertical ? (4.0 / 32) : (23.5 / 4); //Vertical reflector 4" wide x 32" tall,horizontal 23.5" wide x 4" tall //Divide width by height to measure aspect ratio if (report.boundingRectWidth > report.boundingRectHeight) { //particle is wider than it is tall,divide long by short aspectRatio = ratioToscore((rectLong / rectShort) / idealAspectRatio); } else { //particle is taller than it is wide,divide short by long aspectRatio = ratioToscore((rectShort / rectLong) / idealAspectRatio); } return aspectRatio; }
/** * Computes a score (0-100) comparing the aspect ratio to the ideal aspect * ratio for the target. This method uses the equivalent rectangle sides to * determine aspect ratio as it performs better as the target gets skewed by * moving to the left or right. The equivalent rectangle is the rectangle * with sides x and y where particle area= x*y and particle perimeter= 2x+2y * * @param image The image containing the particle to score,100.0))); //force to be in range 0-100 }
/** * Computes a score based on the match between a template profile and the * particle profile in the X direction. This method uses the the column * averages and the profile defined at the top of the sample to look for the * solid vertical edges with a hollow center. * * @param image The image to use,rect); float columnAverages[] = averages.getColumnAverages(); for (int i = 0; i < (columnAverages.length); i++) { if (xMin[(i * (XMINSIZE - 1) / columnAverages.length)] < columnAverages[i] && columnAverages[i] < xMax[i * (XMAXSIZE - 1) / columnAverages.length]) { totaL++; } } total = 100 * total / (columnAverages.length); return total; }
/** * Computes a score based on the match between a template profile and the * particle profile in the Y direction. This method uses the the row * averages and the profile defined at the top of the sample to look for the * solid horizontal edges with a hollow center * * @param image The image to use,rect); float rowAverages[] = averages.getRowAverages(); for (int i = 0; i < (rowAverages.length); i++) { if (yMin[(i * (YMINSIZE - 1) / rowAverages.length)] < rowAverages[i] && rowAverages[i] < yMax[i * (YMAXSIZE - 1) / rowAverages.length]) { totaL++; } } total = 100 * total / (rowAverages.length); return total; }
public double scoreAspectRatio(BinaryImage image,boolean vertical) throws NIVisionException { double rectLong,horizontal 23.5" wide x 4" tall if (report.boundingRectWidth > report.boundingRectHeight) { aspectRatio = ratioToscore((rectLong / rectShort) / idealAspectRatio); } else { aspectRatio = ratioToscore((rectShort / rectLong) / idealAspectRatio); } return aspectRatio; }
public double scoreAspectRatioOnRotatedImage(BinaryImage image,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_SHORT_SIDE); idealAspectRatio = vertical ? (32.0 / 4) : (4/23.5); //Vertical reflector 4" wide x 32" tall,horizontal 23.5" wide x 4" tall if (report.boundingRectWidth > report.boundingRectHeight) { aspectRatio = ratioToscore((rectLong / rectShort) / idealAspectRatio); } else { aspectRatio = ratioToscore((rectShort / rectLong) / idealAspectRatio); } return aspectRatio; }
/** * Computes a score (0-100) comparing the aspect ratio to the ideal aspect * ratio for the target. This method uses the equivalent rectangle sides to * determine aspect ratio as it performs better as the target gets skewed by * moving to the left or right. The equivalent rectangle is the rectangle * with sides x and y where particle area= x*y and particle perimeter= 2x+2y * * @param image The image containing the particle to score,divide short by long aspectRatio = ratioToscore((rectShort / rectLong) / idealAspectRatio); } return aspectRatio; }
/** * Computes a score (0-100) comparing the aspect ratio to the ideal aspect ratio for the target. This method uses * the equivalent rectangle sides to determine aspect ratio as it performs better as the target gets skewed by moving * to the left or right. The equivalent rectangle is the rectangle with sides x and y where particle area= x*y * and particle perimeter= 2x+2y * * @param image The image containing the particle to score,needed to performa additional measurements * @param report The Particle Analysis Report for the particle,used for the width,and particle number * @param outer Indicates whether the particle aspect ratio should be compared to the ratio for the inner target or the outer * @return The aspect ratio score (0-100) */ public double scoreAspectRatio(BinaryImage image,boolean outer) throws NIVisionException { double rectLong,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_SHORT_SIDE); //idealAspectRatio = outer ? (62/29) : (62/20); //Dimensions of goal opening + 4 inches on all 4 sides for reflective tape //yonatan - change back idealAspectRatio = outer ? (62/29) : (62/40); //Dimensions of goal opening + 4 inches on all 4 sides for reflective tape //Divide width by height to measure aspect ratio if(report.boundingRectWidth > report.boundingRectHeight){ //particle is wider than it is tall,divide long by short aspectRatio = 100*(1-Math.abs((1-((rectLong/rectShort)/idealAspectRatio)))); } else { //particle is taller than it is wide,divide short by long aspectRatio = 100*(1-Math.abs((1-((rectShort/rectLong)/idealAspectRatio)))); } return (Math.max(0,100.0))); //force to be in range 0-100 }
/** * Computes a score based on the match between a template profile and the particle profile in the X direction. This method uses the * the column averages and the profile defined at the top of the sample to look for the solid vertical edges with * a hollow center. * * @param image The image to use,should be the image before the convex hull is performed * @param report The Particle Analysis Report for the particle * * @return The X Edge score (0-100) */ public double scoreXEdge(BinaryImage image,ParticleAnalysisReport report) throws NIVisionException { double total = 0; Linearaverages averages; NIVision.Rect rect = new NIVision.Rect(report.boundingRectTop,rect); float columnAverages[] = averages.getColumnAverages(); for(int i=0; i < (columnAverages.length); i++){ if(xMin[(i*(XMINSIZE-1)/columnAverages.length)] < columnAverages[i] && columnAverages[i] < xMax[i*(XMAXSIZE-1)/columnAverages.length]){ totaL++; } } total = 100*total/(columnAverages.length); return total; }
/** * Computes a score based on the match between a template profile and the particle profile in the Y direction. This method uses the * the row averages and the profile defined at the top of the sample to look for the solid horizontal edges with * a hollow center * * @param image The image to use,should be the image before the convex hull is performed * @param report The Particle Analysis Report for the particle * * @return The Y Edge score (0-100) * */ public double scoreYEdge(BinaryImage image,rect); float rowAverages[] = averages.getRowAverages(); for(int i=0; i < (rowAverages.length); i++){ if(yMin[(i*(YMINSIZE-1)/rowAverages.length)] < rowAverages[i] && rowAverages[i] < yMax[i*(YMAXSIZE-1)/rowAverages.length]){ totaL++; } } total = 100*total/(rowAverages.length); return total; }
/** * Computes a score (0-100) comparing the aspect ratio to the ideal aspect ratio for the target. This method uses * the equivalent rectangle sides to determine aspect ratio as it performs better as the target gets skewed by moving * to the left or right. The equivalent rectangle is the rectangle with sides x and y where particle area= x*y * and particle perimeter= 2x+2y * * @param image The image containing the particle to score,100.0))); //force to be in range 0-100 }
/** * Computes a score based on the match between a template profile and the particle profile in the X direction. This method uses the * the column averages and the profile defined at the top of the sample to look for the solid vertical edges with * a hollow center. * * @param image The image to use,rect); float columnAverages[] = averages.getColumnAverages(); for(int i=0; i < (columnAverages.length); i++){ if(xMin[(i*(XMINSIZE-1)/columnAverages.length)] < columnAverages[i] && columnAverages[i] < xMax[i*(XMAXSIZE-1)/columnAverages.length]){ totaL++; } } total = 100*total/(columnAverages.length); return total; }
/** * Computes a score based on the match between a template profile and the particle profile in the Y direction. This method uses the * the row averages and the profile defined at the top of the sample to look for the solid horizontal edges with * a hollow center * * @param image The image to use,rect); float rowAverages[] = averages.getRowAverages(); for(int i=0; i < (rowAverages.length); i++){ if(yMin[(i*(YMINSIZE-1)/rowAverages.length)] < rowAverages[i] && rowAverages[i] < yMax[i*(YMAXSIZE-1)/rowAverages.length]){ totaL++; } } total = 100*total/(rowAverages.length); return total; }
/** * Computes a score (0-100) comparing the aspect ratio to the ideal aspect ratio for the target. This method uses * the equivalent rectangle sides to determine aspect ratio as it performs better as the target gets skewed by moving * to the left or right. The equivalent rectangle is the rectangle with sides x and y where particle area= x*y * and particle perimeter= 2x+2y * * @param image The image containing the particle to score,needed to perform additional measurements * @param report The Particle Analysis Report for the particle,and particle number * @param outer Indicates whether the particle aspect ratio should be compared to the ratio for the inner target or the outer * @return The aspect ratio score (0-100) */ public double scoreAspectRatio(BinaryImage image,divide short by long aspectRatio = ratioToscore((rectShort/rectLong)/idealAspectRatio); } return aspectRatio; }
/** * Computes the estimated distance to a target using the height of the * particle in the image. For more information and graphics showing the math * behind this approach see the Vision Processing section of the * ScreenStepsLive documentation. * * @param image The image to use for measuring the particle estimated * rectangle. * @param report The particle analysis report for the particle. * @param outer True if the particle should be treated as an outer target,* false to treat it as a center target. * @return The estimated distance to the target in inches. */ private double computedistance(BinaryImage image,int particleNumber) throws NIVisionException { double rectLong,height; int targetHeight; rectLong = NIVision.MeasureParticle(image.image,MeasurementType.IMAQ_MT_EQUIVALENT_RECT_LONG_SIDE); height = Math.min(report.boundingRectHeight,rectLong); targetHeight = 32; return Y_IMAGE_RES * targetHeight / (height * 12 * 2 * Math.tan(VIEW_ANGLE * Math.PI / (180 * 2))); }
double computedistance (BinaryImage image,int particleNumber) throws NIVisionException { double rectLong,height; int targetHeight; rectLong = NIVision.MeasureParticle(image.image,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_LONG_SIDE); //using the smaller of the estimated rectangle long side and the bounding rectangle height results in better performance //on skewed rectangles height = Math.min(report.boundingRectHeight,rectLong); targetHeight = 32; return Y_IMAGE_RES * targetHeight / (height * 12 * 2 * Math.tan(VIEW_ANGLE*Math.PI/(180*2))); }
double computedistance(BinaryImage image,int particleNumber) throws NIVisionException { double rectLong,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_LONG_SIDE); height = Math.min(report.boundingRectHeight,rectLong); targetHeight = 32; return Y_IMAGE_RES * targetHeight / (height * 12 * 2 * Math.tan(VIEW_ANGLE * Math.PI / (180 * 2))); }
double computedistanceOnRotatedImage(BinaryImage image,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_LONG_SIDE); height = Math.min(report.boundingRectWidth,rectLong); targetHeight = 32; return X_IMAGE_RES * targetHeight / (height * 12 * 2 * Math.tan(HORIZ_VIEW_ANGLE * Math.PI / (180 * 2))); }
public VisionTarget [] processFrame() { if (enableVision) { lastFrame = System.currentTimeMillis(); try { ColorImage image = camera.getimage(); BinaryImage bImage = image.thresholdRGB( redLow,redHigh,greenLow,greenHigh,blueLow,blueHigh); BinaryImage fImage = bImage.particleFilter(cc); ParticleAnalysisReport [] report = fImage.getorderedParticleAnalysisReports(); VisionTarget [] targets = new VisionTarget[report.length]; for (int i = 0; i < report.length; i++) { double centerX = report[i].center_mass_x; double centerY = report[i].center_mass_y; double width = report[i].boundingRectWidth; double height = report[i].boundingRectHeight; int area = (int)report[i].particleArea; targets[i] = new VisionTarget(centerX,centerY,width,area); } frameProcess = System.currentTimeMillis() - lastFrame; image.free(); bImage.free(); fImage.free(); return targets; } catch (AxisCameraException e) { System.out.println("No Image From Camera: "); frameProcess = System.currentTimeMillis() - lastFrame; return new VisionTarget[0]; } catch (Exception ex) { System.out.println("Camera Exception Thrown: " + ex.getMessage()); frameProcess = System.currentTimeMillis() - lastFrame; return new VisionTarget[0]; } } else { // Vision is not enabled return new VisionTarget[0]; } }
/** * Computes the estimated distance to a target using the height of the particle in the image. For more information and graphics * showing the math behind this approach see the Vision Processing section of the ScreenStepsLive documentation. * * @param image The image to use for measuring the particle estimated rectangle * @param report The Particle Analysis Report for the particle * @param outer True if the particle should be treated as an outer target,false to treat it as a center target * @return The estimated distance to the target in Inches. */ double computedistance (BinaryImage image,boolean outer) throws NIVisionException { double rectShort,height; double targetWidth,targetHeight; rectShort = NIVision.MeasureParticle(image.image,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_SHORT_SIDE); //using the smaller of the estimated rectangle short side and the bounding rectangle height results in better performance //on skewed rectangles //height = Math.min(report.boundingRectHeight,rectShort); width = report.boundingRectWidth; height = report.boundingRectHeight; //targetHeight = outer ? 29 : 21; //changed by Yonatan Oren// //need to change this back to 29/21 for for real ultimate ascent// targetWidth = 16; targetHeight = 9.75; //// // System.out.println("rectShort: " + rectShort); // System.out.println("height: " + height); // System.out.println("boundingRectHeight: " + report.boundingRectHeight); //changed by Yonatan Oren// //return X_IMAGE_RES * targetHeight / (height * 12 * 2 * Math.tan(VIEW_ANGLE*Math.PI/(180*2))); //return 240.0 * targetWidth / (width * Math.tan(VIEW_ANGLE*Math.PI/(180*2))); return 360.0 * targetHeight / (height * Math.tan(VIEW_ANGLE*Math.PI/(180*2))); //4800 / 62 * tan( }
/** * Computes the estimated distance to a target using the height of the particle in the image. For more information and graphics * showing the math behind this approach see the Vision Processing section of the ScreenStepsLive documentation. * * @param image The image to use for measuring the particle estimated rectangle * @param report The Particle Analysis Report for the particle * @param outer True if the particle should be treated as an outer target,rectShort); width = report.boundingRectWidth; height = report.boundingRectHeight; //targetHeight = outer ? 29 : 21; //changed by Yonatan Oren// //need to change this back to 29/21 for for real ultimate ascent// targetWidth = 16; targetHeight = 9.75; //// // System.out.println("rectShort: " + rectShort); // System.out.println("height: " + height); // System.out.println("boundingRectHeight: " + report.boundingRectHeight); //changed by Yonatan Oren// //return X_IMAGE_RES * targetHeight / (height * 12 * 2 * Math.tan(VIEW_ANGLE*Math.PI/(180*2))); //return 240.0 * targetWidth / (width * Math.tan(VIEW_ANGLE*Math.PI/(180*2))); return 360.0 * targetHeight / (height * Math.tan(VIEW_ANGLE*Math.PI/(180*2))); //4800 / 62 * tan( }
public BinaryImage getFilteredImage() throws Exception { ColorImage ci = getimage(); bi = ci.thresholdRGB(RED_LOW,RED_HIGH,GREEN_LOW,GREEN_HIGH,BLUE_LOW,BLUE_HIGH); bi = bi.convexHull(false); bi = bi.removeSmallObjects(true,3); bi = bi.particleFilter(cc); ci.free(); return bi; }
public BinaryImage getHSVimage(ColorImage image){ try{ this.HSVimage = image.thresholdHSV(92,196,19,100,30,100); } catch (NIVisionException ex) { ex.printstacktrace(); } System.out.println("Processed HSV image"); return this.HSVimage; }
public BinaryImage getRGBimage(ColorImage image) { try{ this.RGBimage = image.thresholdRGB(0,150,145,230,120,225); } catch (NIVisionException ex) { ex.printstacktrace(); } System.out.println("Processing RGB image"); return this.RGBimage; }
/** * Computes the estimated distance to a target using the height of the particle in the image. For more information and graphics * showing the math behind this approach see the Vision Processing section of the ScreenStepsLive documentation. * * @param image The image to use for measuring the particle estimated rectangle * @param report The Particle Analysis Report for the particle * @param outer True if the particle should be treated as an outer target,false to treat it as a center target * @return The estimated distance to the target in Inches. */ double computedistance (BinaryImage image,rectLong); targetHeight = 32; return Y_IMAGE_RES * targetHeight / (height * 12 * 2 * Math.tan(VIEW_ANGLE*Math.PI/(180*2))); }
/** * Computes the estimated distance to a target using the height of the * particle in the image. For more information and graphics showing the math * behind this approach see the Vision Processing section of the * ScreenStepsLive documentation. * * @param image The image to use for measuring the particle estimated * rectangle * @param report The Particle Analysis Report for the particle * @param outer True if the particle should be treated as an outer target,* false to treat it as a center target * @return The estimated distance to the target in Inches. */ public static double computedistance(BinaryImage image,boolean outer) throws NIVisionException { double rectShort,height; int targetHeight; rectShort = NIVision.MeasureParticle(image.image,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_SHORT_SIDE); //using the smaller of the estimated rectangle short side and the bounding rectangle height results in better performance //on skewed rectangles height = Math.min(report.boundingRectHeight,rectShort); targetHeight = outer ? 29 : 21; return X_IMAGE_RES * targetHeight / (height * 12 * 2 * Math.tan(VIEW_ANGLE * Math.PI / (180 * 2))); }
/** * Computes the estimated distance to a target using the height of the * particle in the image. For more information and graphics showing the math * behind this approach see the Vision Processing section of the * ScreenStepsLive documentation. * * @param image The image to use for measuring the particle estimated * rectangle * @param report The Particle Analysis Report for the particle * @param outer True if the particle should be treated as an outer target,* false to treat it as a center target * @return The estimated distance to the target in Inches. */ private static double computedistance(BinaryImage image,NIVision.MeasurementType.IMAQ_MT_EQUIVALENT_RECT_LONG_SIDE); //using the smaller of the estimated rectangle long side and the bounding rectangle height results in better performance //on skewed rectangles height = Math.min(report.boundingRectHeight,rectLong); targetHeight = 32; return Y_IMAGE_RES * targetHeight / (height * 12 * 2 * Math.tan(VIEW_ANGLE * Math.PI / (180 * 2))); }
/** * Computes the estimated distance to a target using the height of the * particle in the image. For more information and graphics showing the math * behind this approach see the Vision Processing section of the * ScreenStepsLive documentation. * * @param image The image to use for measuring the particle estimated * rectangle * @param report The Particle Analysis Report for the particle * @param outer True if the particle should be treated as an outer target,rectShort); targetHeight = outer ? 29 : 21; return X_IMAGE_RES * targetHeight / (height * 12 * 2 * Math.tan(VIEW_ANGLE * Math.PI / (180 * 2))); }
/** * Computes the estimated distance to a target using the height of the * particle in the image. For more information and graphics showing the math * behind this approach see the Vision Processing section of the * ScreenStepsLive documentation. * * @param image The image to use for measuring the particle estimated * rectangle * @param report The Particle Analysis Report for the particle * @param outer True if the particle should be treated as an outer target,* false to treat it as a center target * @return The estimated distance to the target in Inches. */ double computedistance(BinaryImage image,rectLong); targetHeight = 32; return Y_IMAGE_RES * targetHeight / (height * 12 * 2 * Math.tan(VIEW_ANGLE * Math.PI / (180 * 2))); }
我们今天的关于binary,varbinary,image的区别和binary和varbinary的分享已经告一段落,感谢您的关注,如果您想了解更多关于.net – SQL Server Varbinary(max):从varbinary字段中选择一个字节子集、c# – 如何将图像存储到varbinary(max)列?、C#二进制读写BinaryReader、BinaryWriter、BinaryFormatter、edu.wpi.first.wpilibj.image.BinaryImage的实例源码的相关信息,请在本站查询。
本文标签: