如果您对Pythonnumpy模块-less_equal()实例源码感兴趣,那么这篇文章一定是您不可错过的。我们将详细讲解Pythonnumpy模块-less_equal()实例源码的各种细节,此外还
如果您对Python numpy 模块-less_equal() 实例源码感兴趣,那么这篇文章一定是您不可错过的。我们将详细讲解Python numpy 模块-less_equal() 实例源码的各种细节,此外还有关于Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable、numpy.random.random & numpy.ndarray.astype & numpy.arange、numpy.ravel()/numpy.flatten()/numpy.squeeze()、Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性的实用技巧。
本文目录一览:- Python numpy 模块-less_equal() 实例源码
- Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable
- numpy.random.random & numpy.ndarray.astype & numpy.arange
- numpy.ravel()/numpy.flatten()/numpy.squeeze()
- Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性
Python numpy 模块-less_equal() 实例源码
Python numpy 模块,less_equal() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.less_equal()。
- def equal(x1, x2):
- """
- Return (x1 == x2) element-wise.
- Unlike `numpy.equal`,this comparison is performed by first
- stripping whitespace characters from the end of the string. This
- behavior is provided for backward-compatibility with numarray.
- Parameters
- ----------
- x1,x2 : array_like of str or unicode
- Input arrays of the same shape.
- Returns
- -------
- out : ndarray or bool
- Output array of bools,or a single bool if x1 and x2 are scalars.
- See Also
- --------
- not_equal,greater_equal,less_equal,greater,less
- """
- return compare_chararrays(x1, x2, ''=='', True)
- def not_equal(x1, x2):
- """
- Return (x1 != x2) element-wise.
- Unlike `numpy.not_equal`,or a single bool if x1 and x2 are scalars.
- See Also
- --------
- equal, ''!='', True)
- def greater_equal(x1, x2):
- """
- Return (x1 >= x2) element-wise.
- Unlike `numpy.greater_equal`,this comparison is performed by
- first stripping whitespace characters from the end of the string.
- This behavior is provided for backward-compatibility with
- numarray.
- Parameters
- ----------
- x1,not_equal, ''>='', True)
- def less_equal(x1, x2):
- """
- Return (x1 <= x2) element-wise.
- Unlike `numpy.less_equal`, ''<='', True)
- def greater(x1, x2):
- """
- Return (x1 > x2) element-wise.
- Unlike `numpy.greater`, ''>'', True)
- def test_NotImplemented_not_returned(self):
- # See gh-5964 and gh-2091. Some of these functions are not operator
- # related and were fixed for other reasons in the past.
- binary_funcs = [
- np.power, np.add, np.subtract, np.multiply, np.divide,
- np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
- np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
- np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
- np.logical_and, np.logical_or, np.logical_xor, np.maximum,
- np.minimum, np.mod
- ]
- # These functions still return NotImplemented. Will be fixed in
- # future.
- # bad = [np.greater,np.greater_equal,np.less,np.less_equal,np.not_equal]
- a = np.array(''1'')
- b = 1
- for f in binary_funcs:
- assert_raises(TypeError, f, a, b)
- def test_identity_equality_mismatch(self):
- a = np.array([np.nan], dtype=object)
- with warnings.catch_warnings():
- warnings.filterwarnings(''always'', '''', FutureWarning)
- assert_warns(FutureWarning, np.equal, a)
- assert_warns(FutureWarning, np.not_equal, a)
- with warnings.catch_warnings():
- warnings.filterwarnings(''error'', FutureWarning)
- assert_raises(FutureWarning, a)
- assert_raises(FutureWarning, a)
- # And the other do not warn:
- with np.errstate(invalid=''ignore''):
- np.less(a, a)
- np.greater(a, a)
- np.less_equal(a, a)
- np.greater_equal(a, a)
- def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8):
- """
- Returns true if all components of a and b are equal to given tolerances.
- If fill_value is True,masked values considered equal. Otherwise,
- masked values are considered unequal. The relative error rtol should
- be positive and << 1.0 The absolute error atol comes into play for
- those elements of b that are very small or zero; it says how small a
- must be also.
- """
- m = mask_or(getmask(a), getmask(b))
- d1 = filled(a)
- d2 = filled(b)
- if d1.dtype.char == "O" or d2.dtype.char == "O":
- return np.equal(d1, d2).ravel()
- x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_)
- y = filled(masked_array(d2, 1).astype(float_)
- d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y))
- return d.ravel()
- def points_in_front(self, points, inverted=False, ret_indices=False):
- ''''''
- Given an array of points,return the points which lie either on the
- plane or in the half-space in front of it (i.e. in the direction of
- the plane normal).
- points: An array of points.
- inverted: When `True`,invert the logic. Return the points that lie
- behind the plane instead.
- ret_indices: When `True`,return the indices instead of the points
- themselves.
- ''''''
- sign = self.sign(points)
- if inverted:
- mask = np.less_equal(sign, 0)
- else:
- mask = np.greater_equal(sign, 0)
- indices = np.flatnonzero(mask)
- return indices if ret_indices else points[indices]
- def equal(x1, True)
- def not_equal(x1, True)
- def greater_equal(x1, True)
- def less_equal(x1, True)
- def greater(x1, True)
- def test_NotImplemented_not_returned(self):
- # See gh-5964 and gh-2091. Some of these functions are not operator
- # related and were fixed for other reasons in the past.
- binary_funcs = [
- np.power, b)
- def test_identity_equality_mismatch(self):
- a = np.array([np.nan], a)
- def approx(a, atol + rtol * umath.absolute(y))
- return d.ravel()
- def has_approx_support(m, m_hat, prob=0.01):
- """Returns 1 if model selection error is less than or equal to prob rate,
- 0 else.
- NOTE: why does np.nonzero/np.flatnonzero create so much problems?
- """
- m_nz = np.flatnonzero(np.triu(m, 1))
- m_hat_nz = np.flatnonzero(np.triu(m_hat, 1))
- upper_diagonal_mask = np.flatnonzero(np.triu(np.ones(m.shape), 1))
- not_m_nz = np.setdiff1d(upper_diagonal_mask, m_nz)
- intersection = np.in1d(m_hat_nz, m_nz) # true positives
- not_intersection = np.in1d(m_hat_nz, not_m_nz) # false positives
- true_positive_rate = 0.0
- if len(m_nz):
- true_positive_rate = 1. * np.sum(intersection) / len(m_nz)
- true_negative_rate = 1. - true_positive_rate
- false_positive_rate = 0.0
- if len(not_m_nz):
- false_positive_rate = 1. * np.sum(not_intersection) / len(not_m_nz)
- return int(np.less_equal(true_negative_rate + false_positive_rate, prob))
- def equal(x1, True)
- def not_equal(x1, True)
- def greater_equal(x1, True)
- def less_equal(x1, True)
- def greater(x1, True)
- def test_NotImplemented_not_returned(self):
- # See gh-5964 and gh-2091. Some of these functions are not operator
- # related and were fixed for other reasons in the past.
- binary_funcs = [
- np.power, b)
- def test_identity_equality_mismatch(self):
- a = np.array([np.nan], a)
- def equal(x1, True)
- def not_equal(x1, True)
- def greater_equal(x1, True)
- def less_equal(x1, True)
- def greater(x1, True)
- def test_NotImplemented_not_returned(self):
- # See gh-5964 and gh-2091. Some of these functions are not operator
- # related and were fixed for other reasons in the past.
- binary_funcs = [
- np.power, b)
- def test_identity_equality_mismatch(self):
- a = np.array([np.nan], a)
- def equal(x1, True)
- def not_equal(x1, True)
- def greater_equal(x1, True)
- def less_equal(x1, True)
- def greater(x1, True)
- def test_NotImplemented_not_returned(self):
- # See gh-5964 and gh-2091. Some of these functions are not operator
- # related and were fixed for other reasons in the past.
- binary_funcs = [
- np.power, b)
- def test_identity_equality_mismatch(self):
- a = np.array([np.nan], a)
- def approx(a, atol + rtol * umath.absolute(y))
- return d.ravel()
- def equal(x1, True)
- def not_equal(x1, True)
- def greater_equal(x1, True)
- def less_equal(x1, True)
- def greater(x1, True)
- def test_NotImplemented_not_returned(self):
- # See gh-5964 and gh-2091. Some of these functions are not operator
- # related and were fixed for other reasons in the past.
- binary_funcs = [
- np.power, b)
- def test_identity_equality_mismatch(self):
- a = np.array([np.nan], a)
- def approx(a, atol + rtol * umath.absolute(y))
- return d.ravel()
- def atmax(a,upperlimit,dimension=None,inclusive=1):
- """
- Returns the maximum value of a,along dimension,including only values greater
- than (or equal to,if inclusive=1) upperlimit. If the limit is set to None,
- a limit larger than the max value in the array is used.
- Usage: atmax(a,upperlimit,dimension=None,inclusive=1)
- """
- if inclusive: upperfcn = N.less
- else: upperfcn = N.less_equal
- if dimension == None:
- a = N.ravel(a)
- dimension = 0
- if upperlimit == None:
- upperlimit = N.maximum.reduce(N.ravel(a))+1
- smallest = N.minimum.reduce(N.ravel(a))
- ta = N.where(upperfcn(a,upperlimit),a,smallest)
- return N.maximum.reduce(ta,dimension)
- def density_slice(rast, rel=np.less_equal, threshold=1000, nodata=-9999):
- ''''''
- Returns a density slice from a given raster. Arguments:
- rast A gdal.Dataset or a NumPy array
- rel A NumPy logic function; defaults to np.less_equal
- threshold An integer number
- ''''''
- # Can accept either a gdal.Dataset or numpy.array instance
- if not isinstance(rast, np.ndarray):
- rastr = rast.ReadAsArray()
- else:
- rastr = rast.copy()
- if (len(rastr.shape) > 2 and min(rastr.shape) > 1):
- raise ValueError(''Expected a single-band raster array'')
- return np.logical_and(
- rel(rastr, np.ones(rast.shape) * threshold),
- np.not_equal(rastr, np.ones(rast.shape) * nodata)).astype(np.int0)
Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable
如何解决Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: ''numpy.ndarray'' object is not callable?
晚安, 尝试打印以下内容时,我在 jupyter 中遇到了 numpy 问题,并且得到了一个 错误: 需要注意的是python版本是3.8.8。 我先用 spyder 测试它,它运行正确,它给了我预期的结果
使用 Spyder:
import numpy as np
for i in range (5):
n = np.random.rand ()
print (n)
Results
0.6604903457995978
0.8236300859753154
0.16067650689842816
0.6967868357083673
0.4231597934445466
现在有了 jupyter
import numpy as np
for i in range (5):
n = np.random.rand ()
print (n)
-------------------------------------------------- ------
TypeError Traceback (most recent call last)
<ipython-input-78-0c6a801b3ea9> in <module>
2 for i in range (5):
3 n = np.random.rand ()
----> 4 print (n)
TypeError: ''numpy.ndarray'' object is not callable
感谢您对我如何在 Jupyter 中解决此问题的帮助。
非常感谢您抽出宝贵时间。
阿特,约翰”
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)
numpy.random.random & numpy.ndarray.astype & numpy.arange
今天看到这样一句代码:
xb = np.random.random((nb, d)).astype(''float32'') #创建一个二维随机数矩阵(nb行d列)
xb[:, 0] += np.arange(nb) / 1000. #将矩阵第一列的每个数加上一个值
要理解这两句代码需要理解三个函数
1、生成随机数
numpy.random.random(size=None)
size为None时,返回float。
size不为None时,返回numpy.ndarray。例如numpy.random.random((1,2)),返回1行2列的numpy数组
2、对numpy数组中每一个元素进行类型转换
numpy.ndarray.astype(dtype)
返回numpy.ndarray。例如 numpy.array([1, 2, 2.5]).astype(int),返回numpy数组 [1, 2, 2]
3、获取等差数列
numpy.arange([start,]stop,[step,]dtype=None)
功能类似python中自带的range()和numpy中的numpy.linspace
返回numpy数组。例如numpy.arange(3),返回numpy数组[0, 1, 2]
numpy.ravel()/numpy.flatten()/numpy.squeeze()
numpy.ravel(a, order=''C'')
Return a flattened array
numpy.chararray.flatten(order=''C'')
Return a copy of the array collapsed into one dimension
numpy.squeeze(a, axis=None)
Remove single-dimensional entries from the shape of an array.
相同点: 将多维数组 降为 一维数组
不同点:
ravel() 返回的是视图(view),意味着改变元素的值会影响原始数组元素的值;
flatten() 返回的是拷贝,意味着改变元素的值不会影响原始数组;
squeeze()返回的是视图(view),仅仅是将shape中dimension为1的维度去掉;
ravel()示例:
1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def log_type(name,arr):
5 print("数组{}的大小:{}".format(name,arr.size))
6 print("数组{}的维度:{}".format(name,arr.shape))
7 print("数组{}的维度:{}".format(name,arr.ndim))
8 print("数组{}元素的数据类型:{}".format(name,arr.dtype))
9 #print("数组:{}".format(arr.data))
10
11 a = np.floor(10*np.random.random((3,4)))
12 print(a)
13 log_type(''a'',a)
14
15 a1 = a.ravel()
16 print("a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19
20 print(a)
21 log_type(''a'',a)
flatten()示例
1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def log_type(name,arr):
5 print("数组{}的大小:{}".format(name,arr.size))
6 print("数组{}的维度:{}".format(name,arr.shape))
7 print("数组{}的维度:{}".format(name,arr.ndim))
8 print("数组{}元素的数据类型:{}".format(name,arr.dtype))
9 #print("数组:{}".format(arr.data))
10
11 a = np.floor(10*np.random.random((3,4)))
12 print(a)
13 log_type(''a'',a)
14
15 a1 = a.flatten()
16 print("修改前a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19 print("修改后a1:{}".format(a1))
20
21 print("a:{}".format(a))
22 log_type(''a'',a)
squeeze()示例:
1. 没有single-dimensional entries的情况
1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def log_type(name,arr):
5 print("数组{}的大小:{}".format(name,arr.size))
6 print("数组{}的维度:{}".format(name,arr.shape))
7 print("数组{}的维度:{}".format(name,arr.ndim))
8 print("数组{}元素的数据类型:{}".format(name,arr.dtype))
9 #print("数组:{}".format(arr.data))
10
11 a = np.floor(10*np.random.random((3,4)))
12 print(a)
13 log_type(''a'',a)
14
15 a1 = a.squeeze()
16 print("修改前a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19 print("修改后a1:{}".format(a1))
20
21 print("a:{}".format(a))
22 log_type(''a'',a)
从结果中可以看到,当没有single-dimensional entries时,squeeze()返回额数组对象是一个view,而不是copy。
2. 有single-dimentional entries 的情况
1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def log_type(name,arr):
5 print("数组{}的大小:{}".format(name,arr.size))
6 print("数组{}的维度:{}".format(name,arr.shape))
7 print("数组{}的维度:{}".format(name,arr.ndim))
8 print("数组{}元素的数据类型:{}".format(name,arr.dtype))
9 #print("数组:{}".format(arr.data))
10
11 a = np.floor(10*np.random.random((1,3,4)))
12 print(a)
13 log_type(''a'',a)
14
15 a1 = a.squeeze()
16 print("修改前a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19 print("修改后a1:{}".format(a1))
20
21 print("a:{}".format(a))
22 log_type(''a'',a)
Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性
一、Numpy数组创建
part 1:np.linspace(起始值,终止值,元素总个数
import numpy as np
''''''
numpy中的ndarray数组
''''''
ary = np.array([1, 2, 3, 4, 5])
print(ary)
ary = ary * 10
print(ary)
''''''
ndarray对象的创建
''''''
# 创建二维数组
# np.array([[],[],...])
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(a)
# np.arange(起始值, 结束值, 步长(默认1))
b = np.arange(1, 10, 1)
print(b)
print("-------------np.zeros(数组元素个数, dtype=''数组元素类型'')-----")
# 创建一维数组:
c = np.zeros(10)
print(c, ''; c.dtype:'', c.dtype)
# 创建二维数组:
print(np.zeros ((3,4)))
print("----------np.ones(数组元素个数, dtype=''数组元素类型'')--------")
# 创建一维数组:
d = np.ones(10, dtype=''int64'')
print(d, ''; d.dtype:'', d.dtype)
# 创建三维数组:
print(np.ones( (2,3,4), dtype=np.int32 ))
# 打印维度
print(np.ones( (2,3,4), dtype=np.int32 ).ndim) # 返回:3(维)
结果图:
part 2 :np.linspace ( 起始值,终止值,元素总个数)
import numpy as np
a = np.arange( 10, 30, 5 )
b = np.arange( 0, 2, 0.3 )
c = np.arange(12).reshape(4,3)
d = np.random.random((2,3)) # 取-1到1之间的随机数,要求设置为诶2行3列的结构
print(a)
print(b)
print(c)
print(d)
print("-----------------")
from numpy import pi
print(np.linspace( 0, 2*pi, 100 ))
print("-------------np.linspace(起始值,终止值,元素总个数)------------------")
print(np.sin(np.linspace( 0, 2*pi, 100 )))
结果图:
二、Numpy的ndarray对象属性:
数组的结构:array.shape
数组的维度:array.ndim
元素的类型:array.dtype
数组元素的个数:array.size
数组的索引(下标):array[0]
''''''
数组的基本属性
''''''
import numpy as np
print("--------------------案例1:------------------------------")
a = np.arange(15).reshape(3, 5)
print(a)
print(a.shape) # 打印数组结构
print(len(a)) # 打印有多少行
print(a.ndim) # 打印维度
print(a.dtype) # 打印a数组内的元素的数据类型
# print(a.dtype.name)
print(a.size) # 打印数组的总元素个数
print("-------------------案例2:---------------------------")
a = np.array([[1, 2, 3], [4, 5, 6]])
print(a)
# 测试数组的基本属性
print(''a.shape:'', a.shape)
print(''a.size:'', a.size)
print(''len(a):'', len(a))
# a.shape = (6, ) # 此格式可将原数组结构变成1行6列的数据结构
# print(a, ''a.shape:'', a.shape)
# 数组元素的索引
ary = np.arange(1, 28)
ary.shape = (3, 3, 3) # 创建三维数组
print("ary.shape:",ary.shape,"\n",ary )
print("-----------------")
print(''ary[0]:'', ary[0])
print(''ary[0][0]:'', ary[0][0])
print(''ary[0][0][0]:'', ary[0][0][0])
print(''ary[0,0,0]:'', ary[0, 0, 0])
print("-----------------")
# 遍历三维数组:遍历出数组里的每个元素
for i in range(ary.shape[0]):
for j in range(ary.shape[1]):
for k in range(ary.shape[2]):
print(ary[i, j, k], end='' '')
结果图:
今天关于Python numpy 模块-less_equal() 实例源码的讲解已经结束,谢谢您的阅读,如果想了解更多关于Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable、numpy.random.random & numpy.ndarray.astype & numpy.arange、numpy.ravel()/numpy.flatten()/numpy.squeeze()、Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性的相关知识,请在本站搜索。
本文标签: