在本文中,您将会了解到关于Numpy-ValueError:无法将NumPy数组转换为张量不支持的对象类型int的新资讯,同时我们还将为您解释无法将变量类型((void)转换为对象)的相关在本文中,我
在本文中,您将会了解到关于Numpy - ValueError:无法将 NumPy 数组转换为张量不支持的对象类型 int的新资讯,同时我们还将为您解释无法将变量类型((void)转换为对象)的相关在本文中,我们将带你探索Numpy - ValueError:无法将 NumPy 数组转换为张量不支持的对象类型 int的奥秘,分析无法将变量类型((void)转换为对象)的特点,并给出一些关于/编写一个函数,要求从给定的向量A中删除元素值在x到y之间的所有元素(向量要求各个元素之间不能有间断), 函数原型为int del(int A ,int n , int x , int y),其...、2022-03-11:int n, int[][] roads, int x, int y, n表示城市数量,城市编号0~n-1, roads[i][j] == distance,表示城市i到城市j距、2022-05-26:void add(int L, int R, int C)代表在arr[L...R]上每个数加C, int get(int L, int R)代表查询arr[L...R]上的累加、android中用view.layout(int ,int,int,int)这4个参数是不是view的左上角的横坐标,纵坐标,view的宽,view的高?的实用技巧。
本文目录一览:- Numpy - ValueError:无法将 NumPy 数组转换为张量不支持的对象类型 int(无法将变量类型((void)转换为对象))
- /编写一个函数,要求从给定的向量A中删除元素值在x到y之间的所有元素(向量要求各个元素之间不能有间断), 函数原型为int del(int A ,int n , int x , int y),其...
- 2022-03-11:int n, int[][] roads, int x, int y, n表示城市数量,城市编号0~n-1, roads[i][j] == distance,表示城市i到城市j距
- 2022-05-26:void add(int L, int R, int C)代表在arr[L...R]上每个数加C, int get(int L, int R)代表查询arr[L...R]上的累加
- android中用view.layout(int ,int,int,int)这4个参数是不是view的左上角的横坐标,纵坐标,view的宽,view的高?
Numpy - ValueError:无法将 NumPy 数组转换为张量不支持的对象类型 int(无法将变量类型((void)转换为对象))
如何解决Numpy - ValueError:无法将 NumPy 数组转换为张量不支持的对象类型 int
这是我的火车数据:
Message_body Label
0 Rofl. Its true to its name 0
1 The guy did some bitching but I acted like i''d... 0
2 Pity,* was in mood for that. So...any other s... 0
3 Will ?b going to esplanade fr home? 0
4 This is the 2nd time we have tried 2 contact u... 1
... ... ...
970 BangBabes Ur order is on the way. U SHOULD rec... 1
971 -PLS STOP bootydelIoUs (32/F) is inviting you ... 1
972 You are a winner U have been specially selecte... 1
973 Customer service annoncement. You have a New Y... 1
974 FreeMsg Why haven''t you replied to my text? I''... 1
这是我的模型:
X_train = np.array(train)
y_train = np.array(train[''Label''])
X_test = test
from tensorflow.keras.layers import Dense,Conv1D,GlobalMaxPooling1D,Embedding,Dropout,MaxPooling1D
from tensorflow.keras.models import Sequential
from tensorflow.keras.callbacks import EarlyStopping,ModelCheckpoint
model = Sequential()
model.add(Embedding(vocab_num,32))
model.add(Dropout(0.2))
model.add(Conv1D(32,5,strides=1,padding=''valid'',activation=''relu''))
model.add(GlobalMaxPooling1D())
model.add(Dense(64,activation=''relu''))
model.add(Dropout(0.2))
model.add(Dense(1,activation=''sigmoid''))
model.summary()
model.compile(optimizer=''adam'',loss=''binary_crossentropy'',metrics=[''acc''])
es = EarlyStopping(monitor = ''val_loss'',mode = ''min'',verbose = 1,patience = 3)
mc = ModelCheckpoint(''best_model.h5'',monitor = ''val_acc'',mode = ''max'',save_best_only = True)
history = model.fit(X_train,y_train,epochs = 10,batch_size=64,validation_split=0.2,callbacks=[es,mc])
这里是错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-54-d78723a788e4> in <module>
----> 1 history = model.fit(X_train,mc])
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py in fit(self,x,y,batch_size,epochs,verbose,callbacks,validation_split,validation_data,shuffle,class_weight,sample_weight,initial_epoch,steps_per_epoch,validation_steps,validation_batch_size,validation_freq,max_queue_size,workers,use_multiprocessing)
1048 training_utils.RespectCompiledTrainableState(self):
1049 # Creates a `tf.data.Dataset` and handles batch and epoch iteration.
-> 1050 data_handler = data_adapter.DataHandler(
1051 x=x,1052 y=y,~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py in __init__(self,use_multiprocessing,model,steps_per_execution)
1098
1099 adapter_cls = select_data_adapter(x,y)
-> 1100 self._adapter = adapter_cls(
1101 x,1102 y,sample_weights,sample_weight_modes,steps,**kwargs)
261 **kwargs):
262 super(TensorLikeDataAdapter,self).__init__(x,**kwargs)
--> 263 x,sample_weights = _process_tensorlike((x,sample_weights))
264 sample_weight_modes = broadcast_sample_weight_modes(
265 sample_weights,sample_weight_modes)
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py in _process_tensorlike(inputs)
1014 return x
1015
-> 1016 inputs = nest.map_structure(_convert_numpy_and_scipy,inputs)
1017 return nest.list_to_tuple(inputs)
1018
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\util\\nest.py in map_structure(func,*structure,**kwargs)
657
658 return pack_sequence_as(
--> 659 structure[0],[func(*x) for x in entries],660 expand_composites=expand_composites)
661
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\util\\nest.py in <listcomp>(.0)
657
658 return pack_sequence_as(
--> 659 structure[0],660 expand_composites=expand_composites)
661
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py in _convert_numpy_and_scipy(x)
1009 if issubclass(x.dtype.type,np.floating):
1010 dtype = backend.floatx()
-> 1011 return ops.convert_to_tensor_v2_with_dispatch(x,dtype=dtype)
1012 elif scipy_sparse and scipy_sparse.issparse(x):
1013 return _scipy_sparse_to_sparse_tensor(x)
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py in wrapper(*args,**kwargs)
199 """Call target,and fall back on dispatchers if there is a TypeError."""
200 try:
--> 201 return target(*args,**kwargs)
202 except (TypeError,ValueError):
203 # Note: convert_to_eager_tensor currently raises a ValueError,not a
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py in convert_to_tensor_v2_with_dispatch(value,dtype,dtype_hint,name)
1402 ValueError: If the `value` is a tensor not of given `dtype` in graph mode.
1403 """
-> 1404 return convert_to_tensor_v2(
1405 value,dtype=dtype,dtype_hint=dtype_hint,name=name)
1406
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py in convert_to_tensor_v2(value,name)
1408 def convert_to_tensor_v2(value,dtype=None,dtype_hint=None,name=None):
1409 """Converts the given `value` to a `Tensor`."""
-> 1410 return convert_to_tensor(
1411 value=value,1412 dtype=dtype,~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\profiler\\trace.py in wrapped(*args,**kwargs)
161 with Trace(trace_name,**trace_kwargs):
162 return func(*args,**kwargs)
--> 163 return func(*args,**kwargs)
164
165 return wrapped
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py in convert_to_tensor(value,name,as_ref,preferred_dtype,ctx,accepted_result_types)
1538
1539 if ret is None:
-> 1540 ret = conversion_func(value,name=name,as_ref=as_ref)
1541
1542 if ret is NotImplemented:
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\framework\\tensor_conversion_registry.py in _default_conversion_function(***Failed resolving arguments***)
50 def _default_conversion_function(value,as_ref):
51 del as_ref # Unused.
---> 52 return constant_op.constant(value,name=name)
53
54
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\framework\\constant_op.py in constant(value,shape,name)
262 ValueError: if called on a symbolic tensor.
263 """
--> 264 return _constant_impl(value,verify_shape=False,265 allow_broadcast=True)
266
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\framework\\constant_op.py in _constant_impl(value,verify_shape,allow_broadcast)
274 with trace.Trace("tf.constant"):
275 return _constant_eager_impl(ctx,value,verify_shape)
--> 276 return _constant_eager_impl(ctx,verify_shape)
277
278 g = ops.get_default_graph()
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\framework\\constant_op.py in _constant_eager_impl(ctx,verify_shape)
299 def _constant_eager_impl(ctx,verify_shape):
300 """Implementation of eager constant."""
--> 301 t = convert_to_eager_tensor(value,dtype)
302 if shape is None:
303 return t
~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\framework\\constant_op.py in convert_to_eager_tensor(value,dtype)
96 dtype = dtypes.as_dtype(dtype).as_datatype_enum
97 ctx.ensure_initialized()
---> 98 return ops.EagerTensor(value,ctx.device_name,dtype)
99
100
ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type int).
X_train.shape 是 (961,2),Y_train.shape 是 (961,)。
train data的dtype是object,更详细,train[''Message_body'']有object,train[''Label'']有int8。
我通过谷歌搜索找到了一些对任何其他类似错误的帮助。
我将 numpy 数组更改为 float32、np.int、...而且我还使用 tf.convert_to_tensor 来定义 y_train 但它们产生了相同的错误。
我认为这是因为我的数据是字符串。
/编写一个函数,要求从给定的向量A中删除元素值在x到y之间的所有元素(向量要求各个元素之间不能有间断), 函数原型为int del(int A ,int n , int x , int y),其...
/**
* @author:(LiberHome)
* @date:Created in 2019/2/28 19:39
* @description:
* @version:$
*/
/* 编写一个函数,要求从给定的向量A中删除元素值在x到y之间的所有元素(向量要求各个元素之间不能有间断),
函数原型为int del(int A ,int n , int x , int y),其中n为输入向量的维数,返回值为删除元素后的维数*/
public class page0602 {
public static void main(String[] args) {
int[] A={1,2,3,4,5,6,7,8,9,10};
int result=-1;
int x=3;
int y=5;
result=del(A,A.length,x,y);
}
private static int del(int[] arr, int len, int a, int b) {
int i=a;
int j=b+1;
while (j+1<len){
arr[i]=arr[j];
}
return len-(b+1-a);
}
}
2022-03-11:int n, int[][] roads, int x, int y, n表示城市数量,城市编号0~n-1, roads[i][j] == distance,表示城市i到城市j距
2022-03-11:int n, int[][] roads, int x, int y, n表示城市数量,城市编号0~n-1, roads[i][j] == distance,表示城市i到城市j距离为distance(无向图), 求城市x到城市y的最短距离。
答案2022-03-11:
有向图,没有负数环。小根堆。
代码用golang编写。代码如下:
package main
import (
"fmt"
"math"
"sort"
)
func main() {
roads := [][]int{{1, 2, 3}, {1, 3, 5}, {2, 3, 1}}
n := 3
x := 1
y := 3
ret := minDistance2(n, roads, x, y)
fmt.Println(ret)
}
func minDistance2(n int, roads [][]int, x, y int) int {
// 第一步生成邻接矩阵
map0 := make([][]int, n+1)
for i := 0; i < n+1; i++ {
map0[i] = make([]int, n+1)
}
for i := 0; i <= n; i++ {
for j := 0; j <= n; j++ {
map0[i][j] = math.MaxInt64
}
}
// 建立路!
for _, road := range roads {
map0[road[0]][road[1]] = getMin(map0[road[0]][road[1]], road[2])
map0[road[1]][road[0]] = getMin(map0[road[1]][road[0]], road[2])
}
// computed[i] = true,表示从源出发点到i这个城市,已经计算出最短距离了
// computed[i] = false,表示从源出发点到i这个城市,还没有计算出最短距离
computed := make([]bool, n+1)
// 距离小根堆
//PriorityQueue<Node> heap = new PriorityQueue<>((a, b) -> (a.pathSum - b.pathSum));
heap0 := make([]*Node, 0)
heap0 = append(heap0, NewNode(x, 0))
for len(heap0) > 0 {
// x -> ... -> 当前的城市, 有距离
sort.Slice(heap0, func(i, j int) bool {
a := heap0[i]
b := heap0[j]
return a.pathSum < b.pathSum
})
cur := heap0[0]
heap0 = heap0[1:]
if computed[cur.city] {
continue
}
// 没算过
// 开始算!
if cur.city == y {
return cur.pathSum
}
computed[cur.city] = true
for next := 1; next <= n; next++ {
if next != cur.city && map0[cur.city][next] != math.MaxInt64 && !computed[next] {
heap0 = append(heap0, NewNode(next, cur.pathSum+map0[cur.city][next]))
}
}
}
return math.MaxInt64
}
func getMin(a, b int) int {
if a < b {
return a
} else {
return b
}
}
// 当前来到的Node,注意这不是城市的意思,这是就是一个普通的封装类
// Node封装了,当前来到的城市是什么,以及,从源出发点到这个城市的路径和是多少?
type Node struct {
// 当前来到的城市编号
city int
// 从源出发点到这个城市的路径和
pathSum int
}
func NewNode(c, p int) *Node {
ans := &Node{}
ans.city = c
ans.pathSum = p
return ans
}
执行结果如下:
左神java代码
2022-05-26:void add(int L, int R, int C)代表在arr[L...R]上每个数加C, int get(int L, int R)代表查询arr[L...R]上的累加
2022-05-26:void add(int L, int R, int C)代表在arr[L...R]上每个数加C, int get(int L, int R)代表查询arr[L...R]上的累加和, 假设你可以在所有操作开始之前,重新排列arr。 请返回每一次get查询的结果都加在一起最大能是多少。 输入参数: int[] arr : 原始数组, int[][] ops,二维数组每一行解释如下: [a,b,c],如果数组有3个数,表示调用add(a,b,c), [a,b],如果数组有2个数,表示调用get(a,b), a和b表示arr范围,范围假设从1开始,不从0开始。 输出: 假设你可以在开始时重新排列arr,返回所有get操作返回值累计和最大是多少? 来自美团。
答案2022-05-26:
线段树。
代码用rust编写。代码如下:
fn main() {
let mut arr: Vec<i32> = vec![1, 2, 3, 4, 5];
let mut ops: Vec<Vec<i32>> = vec![vec![1, 3], vec![2, 4], vec![1, 5]];
println!("ans = {}", max_gets(&mut arr, &mut ops));
}
fn max_gets(arr: &mut Vec<i32>, ops: &mut Vec<Vec<i32>>) -> i32 {
let n = arr.len() as i32;
let mut get_tree = SegmentTree::new(n);
for op in ops.iter_mut() {
if op.len() == 2 {
get_tree.add(op[0], op[1], 1);
}
}
let mut get_cnts: Vec<Vec<i32>> = vec![];
for i in 0..n {
get_cnts.push(vec![]);
for _j in 0..2 {
get_cnts[i as usize].push(0);
}
}
let mut i: i32 = 1;
let mut j: i32 = 0;
while i <= n {
get_cnts[j as usize][0] = j;
get_cnts[j as usize][1] = get_tree.get(i, i);
i += 1;
j += 1;
}
get_cnts.sort_by(|a, b| a[1].cmp(&b[1]));
arr.sort();
let mut re_arrange: Vec<i32> = vec![];
for _i in 0..n {
re_arrange.push(0);
}
for i in 0..n {
re_arrange[get_cnts[i as usize][0] as usize] = arr[i as usize];
}
let mut st = SegmentTree::new2(&mut re_arrange);
let mut ans = 0;
for op in ops.iter_mut() {
if op.len() == 3 {
st.add(op[0], op[1], op[2]);
} else {
ans += st.get(op[0], op[1]);
}
}
return ans;
}
pub struct SegmentTree {
pub n: i32,
pub arr: Vec<i32>,
pub sum: Vec<i32>,
pub lazy: Vec<i32>,
}
impl SegmentTree {
pub fn new(size: i32) -> Self {
let mut n = size + 1;
let mut sum: Vec<i32> = vec![];
let mut lazy: Vec<i32> = vec![];
let arr: Vec<i32> = vec![];
for _i in 0..n << 2 {
sum.push(0);
lazy.push(0);
}
n -= 1;
Self { n, arr, sum, lazy }
}
pub fn new2(origin: &mut Vec<i32>) -> Self {
let mut n = origin.len() as i32 + 1;
let mut arr: Vec<i32> = vec![];
arr.push(0);
for i in 1..n {
arr.push(origin[(i - 1) as usize]);
}
let mut lazy: Vec<i32> = vec![];
let mut sum: Vec<i32> = vec![];
for _i in 0..n << 2 {
sum.push(0);
lazy.push(0);
}
n -= 1;
let mut a = Self { n, arr, sum, lazy };
a.build(1, n, 1);
return a;
}
fn build(&mut self, l: i32, r: i32, rt: i32) {
if l == r {
self.sum[rt as usize] = self.arr[l as usize];
return;
}
let mid = (l + r) >> 1;
self.build(l, mid, rt << 1);
self.build(mid + 1, r, rt << 1 | 1);
self.push_up(rt);
}
fn push_up(&mut self, rt: i32) {
self.sum[rt as usize] = self.sum[(rt << 1) as usize] + self.sum[(rt << 1 | 1) as usize];
}
fn push_down(&mut self, rt: i32, ln: i32, rn: i32) {
if self.lazy[rt as usize] != 0 {
self.lazy[(rt << 1) as usize] += self.lazy[rt as usize];
self.sum[(rt << 1) as usize] += self.lazy[rt as usize] * ln;
self.lazy[(rt << 1 | 1) as usize] += self.lazy[rt as usize];
self.sum[(rt << 1 | 1) as usize] += self.lazy[rt as usize] * rn;
self.lazy[rt as usize] = 0;
}
}
pub fn add(&mut self, ll: i32, rr: i32, cc: i32) {
self.add0(ll, rr, cc, 1, self.n, 1);
}
fn add0(&mut self, ll: i32, rr: i32, cc: i32, l: i32, r: i32, rt: i32) {
if ll <= l && r <= rr {
self.sum[rt as usize] += cc * (r - l + 1);
self.lazy[rt as usize] += cc;
return;
}
let mid = (l + r) >> 1;
self.push_down(rt, mid - l + 1, r - mid);
if ll <= mid {
self.add0(ll, rr, cc, l, mid, rt << 1);
}
if rr > mid {
self.add0(ll, rr, cc, mid + 1, r, rt << 1 | 1);
}
self.push_up(rt);
}
pub fn get(&mut self, ll: i32, rr: i32) -> i32 {
return self.query(ll, rr, 1, self.n, 1);
}
fn query(&mut self, ll: i32, rr: i32, l: i32, r: i32, rt: i32) -> i32 {
if ll <= l && r <= rr {
return self.sum[rt as usize];
}
let mid = (l + r) >> 1;
self.push_down(rt, mid - l + 1, r - mid);
let mut ans = 0;
if ll <= mid {
ans += self.query(ll, rr, l, mid, rt << 1);
}
if rr > mid {
ans += self.query(ll, rr, mid + 1, r, rt << 1 | 1);
}
return ans;
}
}
执行结果如下:
左神java代码
android中用view.layout(int ,int,int,int)这4个参数是不是view的左上角的横坐标,纵坐标,view的宽,view的高?
今天的关于Numpy - ValueError:无法将 NumPy 数组转换为张量不支持的对象类型 int和无法将变量类型((void)转换为对象)的分享已经结束,谢谢您的关注,如果想了解更多关于/编写一个函数,要求从给定的向量A中删除元素值在x到y之间的所有元素(向量要求各个元素之间不能有间断), 函数原型为int del(int A ,int n , int x , int y),其...、2022-03-11:int n, int[][] roads, int x, int y, n表示城市数量,城市编号0~n-1, roads[i][j] == distance,表示城市i到城市j距、2022-05-26:void add(int L, int R, int C)代表在arr[L...R]上每个数加C, int get(int L, int R)代表查询arr[L...R]上的累加、android中用view.layout(int ,int,int,int)这4个参数是不是view的左上角的横坐标,纵坐标,view的宽,view的高?的相关知识,请在本站进行查询。
本文标签: