对于python-numpy-03-创建特定形式数组感兴趣的读者,本文将会是一篇不错的选择,我们将详细介绍numpy中创建特定数组的方法,并为您提供关于"importnumpyasnp"ImportE
对于python-numpy-03-创建特定形式数组感兴趣的读者,本文将会是一篇不错的选择,我们将详细介绍numpy中创建特定数组的方法,并为您提供关于"import numpy as np" ImportError: No module named numpy、3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数、Anaconda Numpy 错误“Importing the Numpy C Extension Failed”是否有另一种解决方案、Difference between import numpy and import numpy as np的有用信息。
本文目录一览:- python-numpy-03-创建特定形式数组(numpy中创建特定数组的方法)
- "import numpy as np" ImportError: No module named numpy
- 3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数
- Anaconda Numpy 错误“Importing the Numpy C Extension Failed”是否有另一种解决方案
- Difference between import numpy and import numpy as np
python-numpy-03-创建特定形式数组(numpy中创建特定数组的方法)
1.np.arange创建指定步长
函数定义:
def arange(start=None, *args, **kwargs): # real signature unknown; NOTE: unreliably restored from __doc__
"""
arange([start,] stop[, step,], dtype=None)
Return evenly spaced values within a given interval.
Values are generated within the half-open interval ``[start, stop)``
(in other words, the interval including `start` but excluding `stop`).
For integer arguments the function is equivalent to the Python built-in
`range` function, but returns an ndarray rather than a list.
When using a non-integer step, such as 0.1, the results will often not
be consistent. It is better to use `numpy.linspace` for these cases.
Parameters
----------
start : number, optional
Start of interval. The interval includes this value. The default
start value is 0.
stop : number
End of interval. The interval does not include this value, except
in some cases where `step` is not an integer and floating point
round-off affects the length of `out`.
step : number, optional
Spacing between values. For any output `out`, this is the distance
between two adjacent values, ``out[i+1] - out[i]``. The default
step size is 1. If `step` is specified as a position argument,
`start` must also be given.
dtype : dtype
The type of the output array. If `dtype` is not given, infer the data
type from the other input arguments.
Returns
-------
arange : ndarray
Array of evenly spaced values.
For floating point arguments, the length of the result is
``ceil((stop - start)/step)``. Because of floating point overflow,
this rule may result in the last element of `out` being greater
than `stop`.
See Also
--------
numpy.linspace : Evenly spaced numbers with careful handling of endpoints.
numpy.ogrid: Arrays of evenly spaced numbers in N-dimensions.
numpy.mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions.
"""
pass
说明:numpy.arange
函数和经常使用的range
函数非常的类似,只是多增加了一个dtype参数,dtype参数的作用和numpy.array
里面介绍的作用是一致的。
range()和arange()只所以这么灵活,一方面是python的灵活的参数机制;另一方面是对接收的参数数目进行判断,根据参数数目的不同执行不同的操作。
示例代码:
# 指定终点
a = np.arange(10)
print(a)
print(''--'' * 20)
# 指定起点、终点
b = np.arange(1, 10)
print(b)
print(''--'' * 20)
# 指定起点、终点、步长
c = np.arange(1, 10, 2)
print(c)
print(''--'' * 20)
# 指定起点、终点、步长、dtype类型
d = np.arange(1, 10, 2, float)
print(d)
print(''--'' * 20)
# 小数的情况也能使用numpy,实际情况这样使用的比较少
e = np.arange(0.1, 1.0, 0.1, float)
print(e)
运行结果:
[0 1 2 3 4 5 6 7 8 9]
----------------------------------------
[1 2 3 4 5 6 7 8 9]
----------------------------------------
[1 3 5 7 9]
----------------------------------------
[1. 3. 5. 7. 9.]
----------------------------------------
[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
2.np.random.random创建随机数
用于创建值范围在[0.0, 1.0)区间的随机数组
函数定义:
def random(size=None): # real signature unknown; restored from __doc__
"""
random(size=None)
Return random floats in the half-open interval [0.0, 1.0). Alias for
`random_sample` to ease forward-porting to the new random API.
"""
pass
通过介绍可以知道,random是random_sample的别名。我们再来看一下random_sample函数。
def random_sample(size=None): # real signature unknown; restored from __doc__
"""
random_sample(size=None)
Return random floats in the half-open interval [0.0, 1.0).
Results are from the "continuous uniform" distribution over the
stated interval. To sample :math:`Unif[a, b), b > a` multiply
the output of `random_sample` by `(b-a)` and add `a`::
(b - a) * random_sample() + a
.. note::
New code should use the ``random`` method of a ``default_rng()``
instance instead; see `random-quick-start`.
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : float or ndarray of floats
Array of random floats of shape `size` (unless ``size=None``, in which
case a single float is returned).
"""
pass
示例代码:
import numpy as np
a1 = np.random.random(size=1)
a2 = np.random.random(size=(1,))
a3 = np.random.random_sample(size=(1,))
print(a1)
print("~~" * 10)
print(a2)
print("~~" * 10)
print(a3)
print(''--'' * 20)
b1 = np.random.random(size=(2, 3))
b2 = np.random.random_sample(size=(2, 3))
print(b1)
print("~~" * 10)
print(b2)
print("--" * 20)
运行结果:
[0.12406671]
[0.51463238]
[0.89463238]
----------------------------------------
[[0.10907993 0.16789092 0.43668195]
[0.79106801 0.22137333 0.01017769]]
[[0.65803265 0.11789976 0.56492191]
[0.74975911 0.09096749 0.05589122]]
程序说明:通过运行结果我们可以看到a1、a2、a3这三个结构一致,说明传递参数最终是以元组的形式进行解析的,另外一个就是random和random_sample效果一致。
> 为了程序规规范性,建议创建ndarray数组过程指定参数size以元组的形式传递。
### 3.np.random.randint创建随机整数
主要用于创建指定区间范围的整数数据类型数组
函数定义:
def randint(low, high=None, size=None, dtype=None): # real signature unknown; restored from doc
"""
randint(low, high=None, size=None, dtype=int)
Return random integers from `low` (inclusive) to `high` (exclusive).
Return random integers from the "discrete uniform" distribution of
the specified dtype in the "half-open" interval [`low`, `high`). If
`high` is None (the default), then results are from [0, `low`).
.. note::
New code should use the ``integers`` method of a ``default_rng()``
instance instead; see `random-quick-start`.
Parameters
----------
low : int or array-like of ints
Lowest (signed) integers to be drawn from the distribution (unless
``high=None``, in which case this parameter is one above the
*highest* such integer).
high : int or array-like of ints, optional
If provided, one above the largest (signed) integer to be drawn
from the distribution (see above for behavior if ``high=None``).
If array-like, must contain integer values
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
dtype : dtype, optional
Desired dtype of the result. Byteorder must be native.
The default value is int.
.. versionadded:: 1.11.0
Returns
-------
out : int or ndarray of ints
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
"""
pass
说明:
1. 参数`low`和参数`high`使用类似于random函数的使用方法
2. size用法和上面random函数介绍的一样,建议使用元组
3. dtype函数用于指定数据类型,注意:**因为randint本身已经指定整数类型的范围,所以不能指定非整形数据类型。**
示例代码:
import numpy as np
指定终点
a1 = np.random.randint(10)
print(a1)
print(''--'' * 20)
指定起点、终点
b1 = np.random.randint(1, 10)
print(b1)
print(''--'' * 20)
指定起点、终点、大小
c1 = np.random.randint(1, 10, size=(2, 3))
print(c1)
print(''--'' * 20)
指定起点、终点、大小、数据类型
d1 = np.random.randint(1, 10, size=(2, 3), dtype=np.uint8)
print(d1)
print(''--'' * 20)
运行结果:
9
9
[[9 8 6]
[1 1 5]]
[[6 3 8]
[9 9 5]]
### 4.创建正态分布数组
#### 4.1 np.random.randn创建标准正太分布
用于创建符合标准正态分布(期望为0,方差为1)
函数定义
def randn(*dn): # known case of numpy.random.mtrand.randn
"""
randn(d0, d1, ..., dn)
Return a sample (or samples) from the "standard normal" distribution.
.. note::
This is a convenience function for users porting code from Matlab,
and wraps `standard_normal`. That function takes a
tuple to specify the size of the output, which is consistent with
other NumPy functions like `numpy.zeros` and `numpy.ones`.
.. note::
New code should use the ``standard_normal`` method of a ``default_rng()``
instance instead; see `random-quick-start`.
If positive int_like arguments are provided, `randn` generates an array
of shape ``(d0, d1, ..., dn)``, filled
with random floats sampled from a univariate "normal" (Gaussian)
distribution of mean 0 and variance 1. A single float randomly sampled
from the distribution is returned if no argument is provided.
Parameters
----------
d0, d1, ..., dn : int, optional
The dimensions of the returned array, must be non-negative.
If no argument is given a single Python float is returned.
Returns
-------
Z : ndarray or float
A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
the standard normal distribution, or a single such float if
no parameters were supplied.
"""
pass
#### 4.2 np.random.common指定方差和期望
用于创建指定期望和方差正态分布数据的数组
函数定义
def normal(loc=0.0, scale=1.0, size=None): # real signature unknown; restored from doc
"""
normal(loc=0.0, scale=1.0, size=None)
Draw random samples from a normal (Gaussian) distribution.
The probability density function of the normal distribution, first
derived by De Moivre and 200 years later by both Gauss and Laplace
independently [2]_, is often called the bell curve because of
its characteristic shape (see the example below).
The normal distributions occurs often in nature. For example, it
describes the commonly occurring distribution of samples influenced
by a large number of tiny, random disturbances, each with its own
unique distribution [2]_.
.. note::
New code should use the ``normal`` method of a ``default_rng()``
instance instead; see `random-quick-start`.
Parameters
----------
loc : float or array_like of floats
Mean ("centre") of the distribution.
scale : float or array_like of floats
Standard deviation (spread or "width") of the distribution. Must be
non-negative.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``loc`` and ``scale`` are both scalars.
Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized normal distribution.
See Also
--------
scipy.stats.norm : probability density function, distribution or
cumulative density function, etc.
Generator.normal: which should be used for new code.
Notes
-----
The probability density for the Gaussian distribution is
.. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },
where :math:`\mu` is the mean and :math:`\sigma` the standard
deviation. The square of the standard deviation, :math:`\sigma^2`,
is called the variance.
The function has its peak at the mean, and its "spread" increases with
the standard deviation (the function reaches 0.607 times its maximum at
:math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that
normal is more likely to return samples lying close to the mean, rather
than those far away.
References
----------
.. [1] Wikipedia, "Normal distribution",
https://en.wikipedia.org/wiki/Normal_distribution
.. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
Random Variables and Random Signal Principles", 4th ed., 2001,
pp. 51, 51, 125.
"""
pass
示例代码:
import numpy as np
a1 = np.random.randn(2)
a2 = np.random.normal(0, 1, 2)
print(a1)
print(''~~'' * 10)
print(a2)
print(''--'' * 20)
b1 = np.random.randn(2, 3)
b2 = np.random.normal(0, 1, (2, 3))
print(b1)
print(''~~'' * 10)
print(b2)
运行结果:
[-0.08968467 0.19935229]
[-2.70345057 0.31810813]
----------------------------------------
[[ 0.26098236 0.59379753 -0.70686308]
[-0.78541554 -0.27910239 -0.15193886]]
[[-0.92466689 0.580677 0.80772163]
[ 2.17103711 -0.11340317 -0.06021829]]
---
> 备注:
> 更多精彩博客,请访问:[聂发俊的技术博客](http://www.niefajun.com/) 博客内容修改和更新,只更新个人博客。
> 对应视频教程,请访问:[python400](https://www.bilibili.com/video/BV1WE411j7p3)
> 完整markdown笔记,请访问: [python400_learn_github](https://github.com/niefajun/python400_learn)
"import numpy as np" ImportError: No module named numpy
问题:没有安装 numpy
解决方法:
下载文件,安装
numpy-1.8.2-win32-superpack-python2.7
安装运行 import numpy,出现
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
import numpy
File "C:\Python27\lib\site-packages\numpy\__init__.py", line 153, in <module>
from . import add_newdocs
File "C:\Python27\lib\site-packages\numpy\add_newdocs.py", line 13, in <module>
from numpy.lib import add_newdoc
File "C:\Python27\lib\site-packages\numpy\lib\__init__.py", line 8, in <module>
from .type_check import *
File "C:\Python27\lib\site-packages\numpy\lib\type_check.py", line 11, in <module>
import numpy.core.numeric as _nx
File "C:\Python27\lib\site-packages\numpy\core\__init__.py", line 6, in <module>
from . import multiarray
ImportError: DLL load failed: %1 不是有效的 Win32 应用程序。
原因是:python 装的是 64 位的,numpy 装的是 32 位的
重新安装 numpy 为:numpy-1.8.0-win64-py2.7
3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数
目录
[TOC]
前言
具体我们来学 Numpy 的统计函数
(一)函数一览表
调用方式:np.*
.sum(a) | 对数组 a 求和 |
---|---|
.mean(a) | 求数学期望 |
.average(a) | 求平均值 |
.std(a) | 求标准差 |
.var(a) | 求方差 |
.ptp(a) | 求极差 |
.median(a) | 求中值,即中位数 |
.min(a) | 求最大值 |
.max(a) | 求最小值 |
.argmin(a) | 求最小值的下标,都处里为一维的下标 |
.argmax(a) | 求最大值的下标,都处里为一维的下标 |
.unravel_index(index, shape) | g 根据 shape, 由一维的下标生成多维的下标 |
(二)统计函数 1
(1)说明
(2)输出
.sum(a)
.mean(a)
.average(a)
.std(a)
.var(a)
(三)统计函数 2
(1)说明
(2)输出
.max(a) .min(a)
.ptp(a)
.median(a)
.argmin(a)
.argmax(a)
.unravel_index(index,shape)
作者:Mark
日期:2019/02/11 周一
Anaconda Numpy 错误“Importing the Numpy C Extension Failed”是否有另一种解决方案
如何解决Anaconda Numpy 错误“Importing the Numpy C Extension Failed”是否有另一种解决方案?
希望有人能在这里提供帮助。我一直在绕圈子一段时间。我只是想设置一个 python 脚本,它将一些 json 数据从 REST API 加载到云数据库中。我在 Anaconda 上设置了一个虚拟环境(因为 GCP 库推荐这样做),安装了依赖项,现在我只是尝试导入库并向端点发送请求。 我使用 Conda(和 conda-forge)来设置环境并安装依赖项,所以希望一切都干净。我正在使用带有 Python 扩展的 VS 编辑器作为编辑器。 每当我尝试运行脚本时,我都会收到以下消息。我已经尝试了其他人在 Google/StackOverflow 上找到的所有解决方案,但没有一个有效。我通常使用 IDLE 或 Jupyter 进行脚本编写,没有任何问题,但我对 Anaconda、VS 或环境变量(似乎是相关的)没有太多经验。 在此先感谢您的帮助!
\Traceback (most recent call last):
File "C:\Conda\envs\gcp\lib\site-packages\numpy\core\__init__.py",line 22,in <module>
from . import multiarray
File "C:\Conda\envs\gcp\lib\site-packages\numpy\core\multiarray.py",line 12,in <module>
from . import overrides
File "C:\Conda\envs\gcp\lib\site-packages\numpy\core\overrides.py",line 7,in <module>
from numpy.core._multiarray_umath import (
ImportError: DLL load Failed while importing _multiarray_umath: The specified module Could not be found.
During handling of the above exception,another exception occurred:
Traceback (most recent call last):
File "c:\API\citi-bike.py",line 4,in <module>
import numpy as np
File "C:\Conda\envs\gcp\lib\site-packages\numpy\__init__.py",line 150,in <module>
from . import core
File "C:\Conda\envs\gcp\lib\site-packages\numpy\core\__init__.py",line 48,in <module>
raise ImportError(msg)
ImportError:
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
Importing the numpy C-extensions Failed. This error can happen for
many reasons,often due to issues with your setup or how NumPy was
installed.
We have compiled some common reasons and troubleshooting tips at:
https://numpy.org/devdocs/user/troubleshooting-importerror.html
Please note and check the following:
* The Python version is: python3.9 from "C:\Conda\envs\gcp\python.exe"
* The NumPy version is: "1.21.1"
and make sure that they are the versions you expect.
Please carefully study the documentation linked above for further help.
Original error was: DLL load Failed while importing _multiarray_umath: The specified module Could not be found.
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)
Difference between import numpy and import numpy as np
Difference between import numpy and import numpy as np
up vote 18 down vote favorite 5 |
I understand that when possible one should use This helps keep away any conflict due to namespaces. But I have noticed that while the command below works the following does not Can someone please explain this? python numpy
|
||||||||
add a comment |
4 Answers
active oldest votes
up vote 13 down vote |
numpy is the top package name, and doing When you do In your above code: Here is the difference between
|
|||
add a comment |
up vote 7 down vote |
The When you import a module via the numpy package is bound to the local variable Thus, is equivalent to, When trying to understand this mechanism, it''s worth remembering that When importing a submodule, you must refer to the full parent module name, since the importing mechanics happen at a higher level than the local variable scope. i.e. I also take issue with your assertion that "where possible one should [import numpy as np]". This is done for historical reasons, mostly because people get tired very quickly of prefixing every operation with Finally, to round out my exposé, here are 2 interesting uses of the 1. long subimports 2. compatible APIs
|
||
add a comment |
up vote 1 down vote |
when you call the statement
|
||
add a comment |
up vote 1 down vote |
This is a language feature. This feature allows:
Notice however that Said that, when you run You receive an
|
||||||||
add a comment |
今天关于python-numpy-03-创建特定形式数组和numpy中创建特定数组的方法的分享就到这里,希望大家有所收获,若想了解更多关于"import numpy as np" ImportError: No module named numpy、3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数、Anaconda Numpy 错误“Importing the Numpy C Extension Failed”是否有另一种解决方案、Difference between import numpy and import numpy as np等相关知识,可以在本站进行查询。
本文标签: