在这篇文章中,我们将为您详细介绍Pythonnumpy模块-product()实例源码的内容,并且讨论关于python的numpy模块的相关问题。此外,我们还会涉及一些关于AndroidAOSP构建错
在这篇文章中,我们将为您详细介绍Python numpy 模块-product() 实例源码的内容,并且讨论关于python的numpy模块的相关问题。此外,我们还会涉及一些关于Android AOSP 构建错误 mkbootimg --kernel out/target/product/xiaomi/kernel 而不是 mkbootimg --kernel out/target/product/xiaomi/boot.img、Commerce Cloud 里的 Product Catalog 和 Product Categories 的联系、CRM 2015 - 如果我从 Project-Product、Quote-Product、Order-Project不是批量删除中选择多个记录,则删除需要将近 35 到 40 秒、javascript-TinyMCE将HREF从“ / category / product-name”更改为“ ../../../../category/product-name”的知识,以帮助您更全面地了解这个主题。
本文目录一览:- Python numpy 模块-product() 实例源码(python的numpy模块)
- Android AOSP 构建错误 mkbootimg --kernel out/target/product/xiaomi/kernel 而不是 mkbootimg --kernel out/target/product/xiaomi/boot.img
- Commerce Cloud 里的 Product Catalog 和 Product Categories 的联系
- CRM 2015 - 如果我从 Project-Product、Quote-Product、Order-Project不是批量删除中选择多个记录,则删除需要将近 35 到 40 秒
- javascript-TinyMCE将HREF从“ / category / product-name”更改为“ ../../../../category/product-name”
Python numpy 模块-product() 实例源码(python的numpy模块)
Python numpy 模块,product() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.product()。
- def compile(self, in_x, train_Feed, eval_Feed):
- n = np.product(self.in_d)
- m, param_init_fn = [dom[i] for (dom, i) in zip(self.domains, self.chosen)]
- #sc = np.sqrt(6.0) / np.sqrt(m + n)
- #W = tf.Variable(tf.random_uniform([n,m],-sc,sc))
- W = tf.Variable( param_init_fn( [n, m] ) )
- b = tf.Variable(tf.zeros([m]))
- # if the number of input dimensions is larger than one,flatten the
- # input and apply the affine transformation.
- if len(self.in_d) > 1:
- in_x_flat = tf.reshape(in_x, shape=[-1, n])
- out_y = tf.add(tf.matmul(in_x_flat, W), b)
- else:
- out_y = tf.add(tf.matmul(in_x, b)
- return out_y
- # computes the output dimension based on the padding scheme used.
- # this comes from the tensorflow documentation
- def get_outdim(self):
- #assert in_x == self.b.get_outdim()
- # relaxing input dimension equal to output dimension. taking into
- # account the padding scheme considered.
- out_d_b = self.b.get_outdim()
- in_d = self.in_d
- if len(out_d_b) == len(in_d):
- out_d = tuple(
- [max(od_i, id_i) for (od_i, id_i) in zip(out_d_b, in_d)])
- else:
- # flattens both input and output.
- out_d_b_flat = np.product(out_d_b)
- in_d_flat = np.product(in_d)
- out_d = (max(out_d_b_flat, in_d_flat) ,)
- return out_d
- def get_surface(self, dest_surf = None):
- camera = self.camera
- im = highgui.cvQueryFrame(camera)
- #convert Ipl image to PIL image
- #print type(im)
- if im:
- xx = opencv.adaptors.Ipl2NumPy(im)
- #print type(xx)
- #print xx.iscontiguous()
- #print dir(xx)
- #print xx.shape
- xxx = numpy.reshape(xx, (numpy.product(xx.shape),))
- if xx.shape[2] != 3:
- raise ValueError("not sure what to do about this size")
- pg_img = pygame.image.frombuffer(xxx, (xx.shape[1],xx.shape[0]), "RGB")
- # if there is a destination surface given,we blit onto that.
- if dest_surf:
- dest_surf.blit(pg_img, (0,0))
- return dest_surf
- #return pg_img
- def test_addsumprod(self):
- # Tests add,sum,product.
- (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- assert_equal(np.add.reduce(x), add.reduce(x))
- assert_equal(np.add.accumulate(x), add.accumulate(x))
- assert_equal(4, sum(array(4), axis=0))
- assert_equal(4, axis=0))
- assert_equal(np.sum(x, axis=0), sum(x, axis=0))
- assert_equal(np.sum(filled(xm, 0), sum(xm, 0))
- assert_equal(np.product(x, product(x, axis=0))
- assert_equal(np.product(x, 0))
- assert_equal(np.product(filled(xm, 1), product(xm, axis=0))
- s = (3, 4)
- x.shape = y.shape = xm.shape = ym.shape = s
- if len(s) > 1:
- assert_equal(np.concatenate((x, y), concatenate((xm, ym), 1))
- assert_equal(np.add.reduce(x, add.reduce(x, 1))
- assert_equal(np.sum(x, 1))
- assert_equal(np.product(x, 1))
- def test_testAddSumProd(self):
- # Test add, xf, s) = self.d
- self.assertTrue(eq(np.add.reduce(x), add.reduce(x)))
- self.assertTrue(eq(np.add.accumulate(x), add.accumulate(x)))
- self.assertTrue(eq(4, axis=0)))
- self.assertTrue(eq(4, axis=0)))
- self.assertTrue(eq(np.sum(x, axis=0)))
- self.assertTrue(eq(np.sum(filled(xm, 0)))
- self.assertTrue(eq(np.product(x, axis=0)))
- self.assertTrue(eq(np.product(x, 0)))
- self.assertTrue(eq(np.product(filled(xm,
- product(xm, axis=0)))
- if len(s) > 1:
- self.assertTrue(eq(np.concatenate((x,
- concatenate((xm, 1)))
- self.assertTrue(eq(np.add.reduce(x, 1)))
- self.assertTrue(eq(np.sum(x, 1)))
- self.assertTrue(eq(np.product(x, 1)))
- def __init__(self, input_shape, output_shape, output_sparsity=.05):
- """
- """
- self.learning_rate = 1/100
- self.input_shape = tuple(input_shape)
- self.output_shape = tuple(output_shape)
- self.input_size = np.product(self.input_shape)
- self.output_size = np.product(self.output_shape)
- self.on_bits = max(1, int(round(output_sparsity * self.output_size)))
- self.xp_q = NStepQueue(3, .90, self.learn)
- self.expected_values = np.random.random((self.input_size, self.output_size)) * self.learning_rate
- self.expected_values = np.array(self.expected_values, dtype=np.float32)
- print("Supervised Controller")
- print("\\tExpected Values shape:", self.expected_values.shape)
- print("\\tFuture discount:", self.xp_q.discount)
- print("\\tLearning Rate:", self.learning_rate)
- def predict(self, input_sdr=None):
- """
- Argument inputs is ndarray of indexes into the input space.
- Returns probability of each catagory in output space.
- """
- self.input_sdr.assign(input_sdr)
- pdf = self.stats[self.input_sdr.flat_index]
- if True:
- # Combine multiple probabilities into single pdf. Product,not
- # summation,to combine probabilities of independant events. The
- # problem with this is if a few unexpected bits turn on it
- # mutliplies the result by zero,and the test dataset is going to
- # have unexpected things in it.
- return np.product(pdf, axis=0, keepdims=False)
- else:
- # Use summation B/C it works well.
- return np.sum(pdf, keepdims=False)
- def add_task(self, dataset_filename, model_filename):
- dataset_src = open(dataset_filename,''r'').read()
- model_src = open(model_filename,"r").read()
- src,info = hopt.extract_hopts(model_src)
- ss_size = int(np.product( map(lambda x: len(x["options"]), info.values() ) ))
- print "Search space size: ", ss_size
- w = []
- for i in range(0,ss_size):
- info_i,src_i = hopt.produce_variant(src,copy.deepcopy(info),i)
- info_i["subtask"] = i
- w.append( (info_i,dataset_src,src_i) )
- print "submitting task..."
- rv = self.socket.send_json(("submit_task", w))
- print rv
- def repeat_sum(u,shape,rep_axes):
- """
- Computes sum of a repeated matrix
- In effect,this routine computes
- code:`np.sum(repeat(u,shape,rep_axes))`. However,it performs
- this without having to perform the full repetition.
- """
- # Must convert to np.array to perform slicing
- shape_vec = np.array(shape,dtype=int)
- rep_vec = np.array(rep_axes,dtype=int)
- # repeat and sum
- urep = repeat_axes(u,rep_axes,rep=False)
- usum = np.sum(urep)*np.product(shape_vec[rep_vec])
- return usum
- def get_final_shape(data_array, out_dims, direction_to_names):
- """
- Determine the final shape that data_array must be reshaped to in order to
- have one axis for each of the out_dims (for instance,combining all
- axes collected by the ''*'' direction).
- """
- final_shape = []
- for direction in out_dims:
- if len(direction_to_names[direction]) == 0:
- final_shape.append(1)
- else:
- # determine shape once dimensions for direction (usually ''*'') are combined
- final_shape.append(
- np.product([len(data_array.coords[name])
- for name in direction_to_names[direction]]))
- return final_shape
- def _init_space(self, space):
- if not isinstance(space, gym.Space):
- raise ValueError("UnkNown space,type ''%s''" % type(space))
- elif isinstance(space, gym.spaces.Box):
- n_dims = np.product(space.shape)
- handler = BoxClipHandler(space.low, space.high)
- elif isinstance(space, gym.spaces.discrete):
- n_dims = 1
- handler = IntHandler(space.n)
- elif isinstance(space, gym.spaces.HighLow):
- n_dims = space.num_rows
- handler = HighLowHandler(space.matrix)
- elif isinstance(space, gym.spaces.Tuple):
- raise NotImplementedError("Space of type ''%s'' is not supported"
- % type(space))
- return n_dims, handler
- def train(self, sentences, iterations=1000):
- # Preprocess sentences to create indices of context and next words
- self.dictionary = build_dictionary(sentences, self.vocabulary_size)
- indices = to_indices(sentences, self.dictionary)
- self.reverse_dictionary = {index: word for word, index in self.dictionary.items()}
- inputs, outputs = self.create_context(indices)
- # Create cost and gradient function for gradient descent
- shapes = [self.W_shape, self.U_shape, self.H_shape, self.C_shape]
- flatten_nplm_cost_gradient = flatten_cost_gradient(nplm_cost_gradient, shapes)
- cost_gradient = bind_cost_gradient(flatten_nplm_cost_gradient, inputs, outputs,
- sampler=get_stochastic_sampler(10))
- # Train neural network
- parameters_size = np.sum(np.product(shape) for shape in shapes)
- initial_parameters = np.random.normal(size=parameters_size)
- self.parameters, cost_history = gradient_descent(cost_gradient, initial_parameters, iterations)
- return cost_history
- def ser(x, y):
- """Measure symbol error rate between symbols in x and y.
- :param x: symbol array #1
- :param y: symbol array #2
- :returns: symbol error rate
- >>> import arlpy
- >>> arlpy.comms.ser([0,1,2,3],[0,2])
- 0.25
- """
- x = _np.asarray(x, dtype=_np.int)
- y = _np.asarray(y, dtype=_np.int)
- n = _np.product(_np.shape(x))
- e = _np.count_nonzero(x^y)
- return float(e)/n
- def ber(x, m=2):
- """Measure bit error rate between symbols in x and y.
- :param x: symbol array #1
- :param y: symbol array #2
- :param m: symbol alphabet size (maximum 64)
- :returns: bit error rate
- >>> import arlpy
- >>> arlpy.comms.ber([0,2],m=4)
- 0.125
- """
- x = _np.asarray(x, dtype=_np.int)
- if _np.any(x >= m) or _np.any(y >= m) or _np.any(x < 0) or _np.any(y < 0):
- raise ValueError(''Invalid data for specified m'')
- if m == 2:
- return ser(x, y)
- if m > _MAX_M:
- raise ValueError(''m > %d not supported'' % (_MAX_M))
- n = _np.product(_np.shape(x))*_np.log2(m)
- e = x^y
- e = e[_np.nonzero(e)]
- e = _np.sum(_popcount[e])
- return float(e)/n
- def __init__(self, xshape, dtype, opt=None):
- """
- Initialise an FISTADFT object with problem size and options.
- Parameters
- ----------
- xshape : tuple of ints
- Shape of working variable X (the primary variable)
- dtype : data-type
- Data type for working variables
- opt : :class:`FISTADFT.Options` object
- Algorithm options
- """
- if opt is None:
- opt = FISTADFT.Options()
- Nx = np.product(xshape)
- super(FISTADFT, self).__init__(Nx, opt)
- self.Xf = None
- self.Yf = None
- def __init__(self, opt=None):
- """
- Initialise an ADMMEqual object with problem size and options.
- Parameters
- ----------
- xshape : tuple of ints
- Shape of working variable X (the primary variable)
- dtype : data-type
- Data type for working variables
- opt : :class:`ADMMEqual.Options` object
- Algorithm options
- """
- if opt is None:
- opt = ADMMEqual.Options()
- Nx = np.product(xshape)
- super(ADMMEqual, opt)
- def mpraw_as_np(shape, dtype):
- """Construct a numpy array of the specified shape and dtype for which the
- underlying storage is a multiprocessing RawArray in shared memory.
- Parameters
- ----------
- shape : tuple
- Shape of numpy array
- dtype : data-type
- Data type of array
- Returns
- -------
- arr : ndarray
- Numpy array
- """
- sz = int(np.product(shape))
- csz = sz * np.dtype(dtype).itemsize
- raw = mp.RawArray(''c'', csz)
- return np.frombuffer(raw, dtype=dtype, count=sz).reshape(shape)
- def slinterp(X, factor, copy=True):
- """
- Slow-ish linear interpolation of a 1D numpy array. There must be some
- better function to do this in numpy.
- Parameters
- ----------
- X : ndarray
- 1D input array to interpolate
- factor : int
- Integer factor to interpolate by
- Return
- ------
- X_r : ndarray
- """
- sz = np.product(X.shape)
- X = np.array(X, copy=copy)
- X_s = np.hstack((X[1:], [0]))
- X_r = np.zeros((factor, sz))
- for i in range(factor):
- X_r[i, :] = (factor - i) / float(factor) * X + (i / float(factor)) * X_s
- return X_r.T.ravel()[:(sz - 1) * factor + 1]
- def slinterp(X, :] = (factor - i) / float(factor) * X + (i / float(factor)) * X_s
- return X_r.T.ravel()[:(sz - 1) * factor + 1]
- def exact_expected_fscore_naive(probs, thresh):
- """NB: This algorithm is exponential in the size of probs!
- Based on initial measurements,less than 15 items is
- sub-second. 16 = 2s,17=4s,18=8s,and,well,you kNow
- the rest...
- possible relaxation to allow larger number of products:
- force items with sufficiently low probs (e.g. < 1%) off
- in groundtruths.
- """
- probs = np.asarray(probs)
- n = len(probs)
- expected = 0
- p_none = np.product(1-probs)
- predict_none = p_none > thresh
- predictions = (probs >= thresh).astype(np.int8)
- for gt in itertools.product([0,1], repeat=n):
- gt = np.array(gt)
- fs = fscore(predictions, gt, predict_none)
- p = gt_prob(gt, probs)
- expected += fs * p
- return expected
- def eqe1(E, query, vocabulary, priors):
- """
- Arguments:
- E - word embedding
- Q - list of query terms
- vocabulary -- list of relevant words
- priors - precomputed priors with same indices as vocabulary
- >>> E = dict()
- >>> E[''a''] = np.asarray([0.5,0.5])
- >>> E[''b''] = np.asarray([0.2,0.8])
- >>> E[''c''] = np.asarray([0.9,0.1])
- >>> E[''d''] = np.asarray([0.8,0.2])
- >>> q = "a b".split()
- >>> vocabulary = "a b c".split()
- >>> priors = np.asarray([0.25,0.5,0.25])
- >>> posterior = eqe1(E,q,vocabulary,priors)
- >>> vocabulary[np.argmax(posterior)]
- ''c''
- """
- posterior = [priors[i] *
- np.product([delta(E[qi], E[w]) / priors[i] for qi in query])
- for i, w in enumerate(vocabulary)]
- return np.asarray(posterior)
- def weight_by_class_balance(truth, classes=None):
- """
- Determines a loss weight map given the truth by balancing the classes from the classes argument.
- The classes argument can be used to only include certain classes (you may for instance want to exclude the background).
- """
- if classes is None:
- # Include all classes
- classes = np.unique(truth)
- weight_map = np.zeros_like(truth, dtype=np.float32)
- total_amount = np.product(truth.shape)
- for c in classes:
- class_mask = np.where(truth==c,1,0)
- class_weight = 1/((np.sum(class_mask)+1e-8)/total_amount)
- weight_map += (class_mask*class_weight)#/total_amount
- return weight_map
- def eval_expression(expr, values=None):
- """
- Evaluate a symbolic expression and returns a numerical array.
- :param expr: A symbolic expression to evaluate,in the form of a N_terms * N_Vars matrix
- :param values: None,or a dictionary of variable:value pairs,to substitute in the symbolic expression.
- :return: An evaled expression,in the form of an N_terms array.
- """
- n_coeffs = expr.shape[0]
- evaled_expr = np.zeros(n_coeffs)
- for (i, term) in enumerate(expr):
- if values:
- evaled_term = np.array([values.get(elem, 0) if isinstance(elem, str) else elem for elem in term])
- else:
- evaled_term = np.array(
- [0 if isinstance(elem, str) else elem for elem in term]) # All variables at 0
- evaled_expr[i] = np.product(evaled_term.astype(float)) # Gradient is the product of values
- return evaled_expr
- def test_addsumprod(self):
- # Tests add, 1))
- def test_testAddSumProd(self):
- # Test add, 1)))
- def _read_raw_field(self, grid, field):
- field_name = field[1]
- base_dir = self.ds.index.raw_file
- Box_list = self.ds.index.raw_field_map[field_name][0]
- fn_list = self.ds.index.raw_field_map[field_name][1]
- offset_list = self.ds.index.raw_field_map[field_name][2]
- lev = grid.Level
- filename = base_dir + "Level_%d/" % lev + fn_list[grid.id]
- offset = offset_list[grid.id]
- Box = Box_list[grid.id]
- lo = Box[0]
- hi = Box[1]
- shape = hi - lo + 1
- with open(filename, "rb") as f:
- f.seek(offset)
- f.readline() # always skip the first line
- arr = np.fromfile(f, ''float64'', np.product(shape))
- arr = arr.reshape(shape, order=''F'')
- return arr
- def __init__(self, ds, max_level=2):
- self.max_level = max_level
- self.cell_count = 0
- self.layers = []
- self.domain_dimensions = ds.domain_dimensions
- self.domain_left_edge = ds.domain_left_edge
- self.domain_right_edge = ds.domain_right_edge
- self.grid_filename = "amr_grid.inp"
- self.ds = ds
- base_layer = RadMC3DLayer(0, None, 0,
- self.domain_left_edge,
- self.domain_right_edge,
- self.domain_dimensions)
- self.layers.append(base_layer)
- self.cell_count += np.product(ds.domain_dimensions)
- sorted_grids = sorted(ds.index.grids, key=lambda x: x.Level)
- for grid in sorted_grids:
- if grid.Level <= self.max_level:
- self._add_grid_to_layers(grid)
- def __init__(self, patchsize, source, binary_mask=None,
- random_order=False, mirrored=True, max_num=None):
- self.patchsize = patchsize
- self.source = source.astype(np.float32)
- self.mask = binary_mask
- self.random_order = random_order
- self.mirrored = mirrored
- self.max_num = max_num
- if len(self.source.shape)==2:
- self.source = self.source[:,:,np.newaxis]
- if self.mask is not None and len(self.mask.shape)==2:
- self.mask = self.mask[:,np.newaxis]
- if self.mask is not None:
- self.num_patches = (self.mask>0).sum()
- else:
- self.num_patches = np.product(self.source.shape)
- def apply(self, data, copy=False):
- if copy:
- data = np.copy(data)
- data_shape = data.shape
- if len(data.shape) > 2:
- data = data.reshape(data.shape[0], np.product(data.shape[1:]))
- assert len(data.shape) == 2, ''Contrast norm on flattened data''
- # assert np.min(data) >= 0.
- # assert np.max(data) <= 1.
- data -= data.mean(axis=1)[:, np.newaxis]
- norms = np.sqrt(np.sum(data ** 2, axis=1)) / self.scale
- norms[norms < self.epsilon] = self.epsilon
- data /= norms[:, np.newaxis]
- if data_shape != data.shape:
- data = data.reshape(data_shape)
- return data
- def weight_by_class_balance(truth, dtype=np.float32)
- total_amount = np.product(truth.shape)
- min_weight = sys.maxint
- for c in classes:
- class_mask = np.where(truth==c,0)
- class_weight = 1/((np.sum(class_mask)+1e-8)/total_amount)
- if class_weight < min_weight:
- min_weight = class_weight
- weight_map += (class_mask*class_weight)#/total_amount
- weight_map /= min_weight
- return weight_map
- def __iter__(self):
- """Iterate over the points in the grid.
- Returns
- -------
- params : iterator over dict of string to any
- Yields dictionaries mapping each estimator parameter to one of its
- allowed values.
- """
- for p in self.param_grid:
- # Always sort the keys of a dictionary,for reproducibility
- items = list(p.items())
- if not items:
- yield {}
- else:
- for estimator, grid_list in items:
- for grid in grid_list:
- grid_points = sorted(list(grid.items()))
- keys, values = zip(*grid_points)
- for v in product(*values):
- params = dict(zip(keys, v))
- yield (estimator, params)
- def test_activation_layer_params(self):
- options = dict(
- activation = [''tanh'', ''relu'', ''sigmoid'', ''softmax'', ''softplus'', ''softsign'', ''hard_sigmoid'', ''elu'']
- )
- # Define a function that tests a model
- num_channels = 10
- input_dim = 10
- def build_model(x):
- model = Sequential()
- model.add(Dense(num_channels, input_dim = input_dim))
- model.add(Activation(**dict(zip(options.keys(), x))))
- return x, model
- # Iterate through all combinations
- product = itertools.product(*options.values())
- args = [build_model(p) for p in product]
- # Test the cases
- print("Testing a total of %s cases. This Could take a while" % len(args))
- for param, model in args:
- model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
- self._run_test(model, param)
- def test_dense_layer_params(self):
- options = dict(
- activation = [''relu'', ''tanh'', ''elu'',''hard_sigmoid''],
- use_bias = [True, False],
- )
- # Define a function that tests a model
- input_shape = (10,)
- num_channels = 10
- def build_model(x):
- kwargs = dict(zip(options.keys(), x))
- model = Sequential()
- model.add(Dense(num_channels, input_shape = input_shape, **kwargs))
- return x, model in args:
- self._run_test(model, param)
- def test_conv_layer_params(self, model_precision=_MLMODEL_FULL_PRECISION):
- options = dict(
- activation = [''relu'', ''sigmoid''], # keras does not support softmax on 4-D
- use_bias = [True,
- padding = [''same'', ''valid''],
- filters = [1, 3, 5],
- kernel_size = [[5,5]], # fails when sizes are different
- )
- # Define a function that tests a model
- input_shape = (10, 10, 1)
- def build_model(x):
- kwargs = dict(zip(options.keys(), x))
- model = Sequential()
- model.add(Conv2D(input_shape = input_shape, param, model_precision=model_precision)
- def test_activation_layer_params(self):
- options = dict(
- activation = [''tanh'', ''softsign'']
- )
- # Define a function that tests a model
- num_channels = 10
- input_dim = 10
- def build_model(x):
- model = Sequential()
- model.add(Dense(num_channels, param)
- def test_dense_layer_params(self):
- options = dict(
- activation = [''relu'',
- bias = [True,
- )
- # Define a function that tests a model
- input_dim = 10
- num_channels = 10
- def build_model(x):
- kwargs = dict(zip(options.keys(), input_dim = input_dim, param)
- def cartesian_product(X):
- ''''''
- Numpy version of itertools.product or pandas.compat.product.
- Sometimes faster (for large inputs)...
- Examples
- --------
- >>> cartesian_product([list(''ABC''),[1,2]])
- [array([''A'',''A'',''B'',''C'',''C''],dtype=''|S1''),
- array([1,2])]
- ''''''
- lenX = np.fromiter((len(x) for x in X), dtype=int)
- cumprodX = np.cumproduct(lenX)
- a = np.roll(cumprodX, 1)
- a[0] = 1
- b = cumprodX[-1] / cumprodX
- return [np.tile(np.repeat(np.asarray(com._values_from_object(x)), b[i]),
- np.product(a[i]))
- for i, x in enumerate(X)]
- def test_addsumprod(self):
- # Tests add, 1))
- def get_surface(self,0))
- return dest_surf
- #return pg_img
- def test_addsumprod(self):
- # Tests add, 1))
- def test_testAddSumProd(self):
- # Test add, 1)))
- def __init__(self, fdir, fname, nperbin):
- if (fdir[-1] != ''/''): fdir += ''/''
- self.fdir = fdir
- self.procxyz = self.get_proc_topology()
- self.procs = int(np.product(self.procxyz))
- print("OpenFOAM_RawData Warning - disable parallel check,assuming always parallel")
- self.parallel_run = True
- #if self.procs != 1:
- # self.parallel_run = True
- #else:
- # self.parallel_run = False
- self.grid = self.get_grid()
- self.reclist = self.get_reclist()
- self.maxrec = len(self.reclist) - 1 # count from 0
- self.fname = fname
- self.npercell = nperbin #self.get_npercell()
- self.nu = self.get_nu()
- self.header = None
- def visualize_hypercolumns(model, original_img):
- img = np.float32(cv2.resize(original_img, (200, 66))) / 255.0
- layers_extract = [9]
- hc = extract_hypercolumns(model, layers_extract, img)
- avg = np.product(hc, axis=0)
- avg = np.abs(avg)
- avg = avg / np.max(np.max(avg))
- heatmap = cv2.applyColorMap(np.uint8(255 * avg), cv2.COLORMAP_JET)
- heatmap = np.float32(heatmap) / np.max(np.max(heatmap))
- heatmap = cv2.resize(heatmap, original_img.shape[0:2][::-1])
- both = 255 * heatmap * 0.7 + original_img
- both = both / np.max(both)
- return both
- def weight_by_class_balance(truth,0)
- class_weight = 1/((np.sum(class_mask)+1e-8)/total_amount)
- weight_map += (class_mask*class_weight)#/total_amount
- return weight_map
- def __init__(self, key=lambda x: x.Level)
- for grid in sorted_grids:
- if grid.Level <= self.max_level:
- self._add_grid_to_layers(grid)
- def test_addsumprod(self):
- # Tests add, 1))
- def test_testAddSumProd(self):
- # Test add, 1)))
- def __iter__(self):
- """Iterate over the points in the grid.
- Returns
- -------
- params : iterator over dict of string to any
- Yields dictionaries mapping each estimator parameter to one of its
- allowed values.
- """
- for p in self.param_grid:
- # Always sort the keys of a dictionary,for reproducibility
- items = sorted(p.items())
- if not items:
- yield {}
- else:
- keys, values = zip(*items)
- for v in product(*values):
- params = dict(zip(keys, v))
- yield params
- def make_eigvals_positive(am, targetprod):
- """For the symmetric square matrix `am`,increase any zero eigenvalues
- such that the total product of eigenvalues is greater or equal to
- `targetprod`. Returns a (possibly) new,non-singular matrix."""
- w, v = linalg.eigh(am) # use eigh since a is symmetric
- mask = w < 1.e-10
- if np.any(mask):
- nzprod = np.product(w[~mask]) # product of nonzero eigenvalues
- nzeros = mask.sum() # number of zero eigenvalues
- new_val = max(1.e-10, (targetprod / nzprod) ** (1. / nzeros))
- w[mask] = new_val # adjust zero eigvals
- am_new = np.dot(np.dot(v, np.diag(w)), linalg.inv(v)) # re-form cov
- else:
- am_new = am
- return am_new
- def test_addsumprod(self):
- # Tests add, 1))
Android AOSP 构建错误 mkbootimg --kernel out/target/product/xiaomi/kernel 而不是 mkbootimg --kernel out/target/product/xiaomi/boot.img
如何解决Android AOSP 构建错误 mkbootimg --kernel out/target/product/xiaomi/kernel 而不是 mkbootimg --kernel out/target/product/xiaomi/boot.img
我正在尝试为 redmi 5a 构建 aosp,所有设备、内核和供应商都是通过清单设置的。构建时出现以下错误:
Failed: ninja: ''out/target/product/xiaomi/kernel'',''out/target/product/xiaomi/boot.img'' 需要,缺少并且没有已知的规则来实现
我认为它无法创建手动创建的“内核”文件夹,但后来出现了新错误: enter image description here
如果您仔细查看输出(请参考图片): /bin/bash -c "(out/host/linux-x86/bin/mkbootimg --kernel out/target/product/xiaomi/kernel
代替 mkbootimg --kernel out/target/product/xiaomi/kernel 应该是 mkbootimg --kernel out/target/product/xiaomi/boot.img*
我无法找到我可以在哪里进行更改以实现此目的。请帮我解决这个问题。
Commerce Cloud 里的 Product Catalog 和 Product Categories 的联系
SAP Commerce Cloud 是一个为企业提供全方位电子商务解决方案的平台,旨在帮助企业实现高效的在线销售和客户管理。其中,product catalog
(产品目录)是该平台中一个核心的组件,它承载着企业对外展示商品信息的重要功能。
product catalog
在 SAP Commerce Cloud 中,主要指的是一个组织结构化的商品和服务的集合。这个目录包含了企业提供的全部或部分产品,按照一定的分类和属性进行组织,以便客户能够方便地浏览、搜索和选择产品。通常情况下,一个企业可以拥有多个 product catalog
,比如区分为 Summer Collection
和 Winter Collection
,或者是基于市场区分的,如 EU Catalog
和 US Catalog
。
product categories
(产品类别),则是在产品目录内部用来进一步组织产品的方式。类别可以被视为目录内的一个层次或者节点,它帮助将产品细分成更小的集合,这对于管理大量的产品非常有帮助。例如,一个服装零售商的 product catalog
可能包括如 Men''s Clothing
、Women''s Clothing
和 Children''s Clothing
这样的产品类别。每个类别下面,还可以进一步细分,如 Men''s Clothing
可以分为 Suits
、Casual Wear
和 Outerwear
等子类别。
在 SAP Commerce Cloud 中,产品目录和产品类别的关系是非常紧密的。产品目录提供了一个宏观的视角,展示了企业可以提供的所有商品的范围。而产品类别则提供了更细化的视图,帮助客户在复杂多变的商品中快速找到他们感兴趣的项。此外,这种结构化的信息不仅仅是为了方便用户,它也使得企业能够更有效地管理产品数据,比如轻松更新、维护和推广特定类别的商品。
例如,假设一个国际运动服装品牌拥有一个全球性的 product catalog
。在这个目录下,可能会有 Running
、Football
、Basketball
等多个产品类别。每个类别下面,根据具体的需求和市场定位,又会分为不同的子类别,如 Running
可以细分为 Shoes
、Apparel
和 Accessories
。这种组织方式不仅帮助消费者更快地找到他们需要的产品,也便于企业针对特定市场或季节推出促销活动。
对于企业来说,管理 product catalog
和 product categories
是非常重要的。这不仅关系到产品信息的准确性和及时更新,也关系到企业能否提供良好的客户体验。例如,确保产品分类逻辑、直观并且易于导航是提高转化率的关键。此外,随着电子商务的发展,企业还需要不断地通过数据分析来优化目录结构,以适应市场趋势和消费者行为的变化。
在实际操作中,SAP Commerce Cloud 提供了强大的工具和接口来管理产品目录和类别。通过后台管理系统,企业可以轻松地添加、修改或删除产品信息,调整类别结构,或者为特定的市场或客户群体定制目录。此外,这个平台还支持多种语言和货币,使得跨国经营变得更加容易。
最终,通过高效的目录管理,企业可以确保在竞争激烈的市场中保持优势,通过精确的市场定位和有效的客户沟通来提升销售业绩和品牌价值。无论是面对企业客户还是最终消费者,一个结构清晰、易于导航的产品目录都是成功的关键。
总结来说,product catalog
和 product categories
在 SAP Commerce Cloud 中扮演着至关重要的角色。它们不仅构成了企业提供服务的基础,也是提升客户体验和实现销售目标的重要工具。通过合理的规划和细致的管理,企业可以利用这些工具来提升市场竞争力和客户满意度,实现持续的业务增长和扩展。
CRM 2015 - 如果我从 Project-Product、Quote-Product、Order-Project不是批量删除中选择多个记录,则删除需要将近 35 到 40 秒
如何解决CRM 2015 - 如果我从 Project-Product、Quote-Product、Order-Project不是批量删除中选择多个记录,则删除需要将近 35 到 40 秒
在 CRM 2015 中,从项目产品、报价产品或订单产品列表中删除超过 5 条记录需要 35 到 40 秒。这不是批量删除。
有时我会在删除过程之间看到下面的无响应/等待屏幕。
如何解决这个问题或减少时间?
解决方法
由于包括重新计算父订单值在内的内部流程,删除订单产品等子记录可能需要一段时间。
当您删除单个订单产品时,系统会重新计算父订单的总数等。每个记录都会发生这种情况,删除多条记录当然需要更长的时间。
可能还会发生其他进程 - 自定义进程或系统进程。您可以检查是否有任何自定义的,但系统进程很大程度上是一个黑匣子。
我见过客户偶尔需要创建超过 10,000 行的发票的情况。由于创建每一行会触发重新计算,因此正常的自动化选项会超时。我最终创建了一个控制台应用程序,将这些行分批添加到怪物发票中。
javascript-TinyMCE将HREF从“ / category / product-name”更改为“ ../../../../category/product-name”
我已经使用TinyMCE已有一段时间了,以前没有遇到过此问题.尽管每次我尝试向文本添加href链接时,它都会添加不需要的“ ../”.也许这是一个普遍的问题,但我不知道您将其称为“ ../”还是返回目录
convert_urls: false,
relative_urls: false
解决方法:
您想看一下有关配置TinyMCE是否使用相对链接的文章:
http://tinymce.moxiecode.com/tryit/url_conversion.php
它涵盖了许多不同的选择
我们今天的关于Python numpy 模块-product() 实例源码和python的numpy模块的分享就到这里,谢谢您的阅读,如果想了解更多关于Android AOSP 构建错误 mkbootimg --kernel out/target/product/xiaomi/kernel 而不是 mkbootimg --kernel out/target/product/xiaomi/boot.img、Commerce Cloud 里的 Product Catalog 和 Product Categories 的联系、CRM 2015 - 如果我从 Project-Product、Quote-Product、Order-Project不是批量删除中选择多个记录,则删除需要将近 35 到 40 秒、javascript-TinyMCE将HREF从“ / category / product-name”更改为“ ../../../../category/product-name”的相关信息,可以在本站进行搜索。
本文标签: