如果您想了解Pythonnumpy模块-equal()实例源码的知识,那么本篇文章将是您的不二之选。同时我们将深入剖析2022-08-19:以下go语言代码输出什么?A:equal;B:notequa
如果您想了解Python numpy 模块-equal() 实例源码的知识,那么本篇文章将是您的不二之选。同时我们将深入剖析2022-08-19:以下go语言代码输出什么?A:equal;B:not equal;C:不确定。 package main import ( “fmt“ “reflect“ )、java – 使用ComparisonChain对Object.equal()u0026u0026 Objects.equal()…与Guava有什么好处、Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable、numpy.random.random & numpy.ndarray.astype & numpy.arange的各个方面,并给出实际的案例分析,希望能帮助到您!
本文目录一览:- Python numpy 模块-equal() 实例源码
- 2022-08-19:以下go语言代码输出什么?A:equal;B:not equal;C:不确定。 package main import ( “fmt“ “reflect“ )
- java – 使用ComparisonChain对Object.equal()u0026u0026 Objects.equal()…与Guava有什么好处
- Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable
- numpy.random.random & numpy.ndarray.astype & numpy.arange
Python numpy 模块-equal() 实例源码
Python numpy 模块,equal() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.equal()。
- def go_nn_kdtree(eps=0, parallel=True):
- """
- Using a specialized data structure,the KDTree
- This is not as performant because we''re in a high dimensional space
- 0.777 accuracy? Should be 0.794
- """
- n_jobs = 1
- if parallel:
- n_jobs = -1
- neighbors = tree.query(Xtest, eps=eps, n_jobs=n_jobs)
- predictions = ytrain[neighbors[1]]
- acc = np.equal(predictions, ytest).mean()
- return acc
- def updateSpots(self, dataSet=None):
- if dataSet is None:
- dataSet = self.data
- invalidate = False
- if self.opts[''pxMode'']:
- mask = np.equal(dataSet[''sourceRect''], None)
- if np.any(mask):
- invalidate = True
- opts = self.getSpotOpts(dataSet[mask])
- sourceRect = self.fragmentAtlas.getSymbolCoords(opts)
- dataSet[''sourceRect''][mask] = sourceRect
- self.fragmentAtlas.getAtlas() # generate atlas so source widths are available.
- dataSet[''width''] = np.array(list(imap(QtCore.QRectF.width, dataSet[''sourceRect''])))/2
- dataSet[''targetRect''] = None
- self._maxSpotPxWidth = self.fragmentAtlas.max_width
- else:
- self._maxSpotWidth = 0
- self._maxSpotPxWidth = 0
- self.measureSpotSizes(dataSet)
- if invalidate:
- self.invalidate()
- def getSpotOpts(self, recs, scale=1.0):
- if recs.ndim == 0:
- rec = recs
- symbol = rec[''symbol'']
- if symbol is None:
- symbol = self.opts[''symbol'']
- size = rec[''size'']
- if size < 0:
- size = self.opts[''size'']
- pen = rec[''pen'']
- if pen is None:
- pen = self.opts[''pen'']
- brush = rec[''brush'']
- if brush is None:
- brush = self.opts[''brush'']
- return (symbol, size*scale, fn.mkPen(pen), fn.mkBrush(brush))
- else:
- recs = recs.copy()
- recs[''symbol''][np.equal(recs[''symbol''], None)] = self.opts[''symbol'']
- recs[''size''][np.equal(recs[''size''], -1)] = self.opts[''size'']
- recs[''size''] *= scale
- recs[''pen''][np.equal(recs[''pen''], None)] = fn.mkPen(self.opts[''pen''])
- recs[''brush''][np.equal(recs[''brush''], None)] = fn.mkBrush(self.opts[''brush''])
- return recs
- def updateSpots(self, dataSet[''sourceRect''])))/2
- dataSet[''targetRect''] = None
- self._maxSpotPxWidth = self.fragmentAtlas.max_width
- else:
- self._maxSpotWidth = 0
- self._maxSpotPxWidth = 0
- self.measureSpotSizes(dataSet)
- if invalidate:
- self.invalidate()
- def getSpotOpts(self, None)] = fn.mkBrush(self.opts[''brush''])
- return recs
- def calc_metrics(self, data_gen, history, dataset, logs):
- y_true = []
- predictions = []
- for i in range(data_gen.steps):
- if self.verbose == 1:
- print "\\r\\tdone {}/{}".format(i, data_gen.steps),
- (x,y) = next(data_gen)
- pred = self.model.predict(x, batch_size=self.batch_size)
- if isinstance(x, list) and len(x) == 2: # deep supervision
- for m, t, p in zip(x[1].flatten(), y.flatten(), pred.flatten()):
- if np.equal(m, 1):
- y_true.append(t)
- predictions.append(p)
- else:
- y_true += list(y.flatten())
- predictions += list(pred.flatten())
- print "\\n"
- predictions = np.array(predictions)
- predictions = np.stack([1-predictions, predictions], axis=1)
- ret = metrics.print_metrics_binary(y_true, predictions)
- for k, v in ret.iteritems():
- logs[dataset + ''_'' + k] = v
- history.append(ret)
- def add(self, output, target):
- if torch.is_tensor(output):
- output = output.cpu().squeeze().numpy()
- if torch.is_tensor(target):
- target = target.cpu().squeeze().numpy()
- elif isinstance(target, numbers.Number):
- target = np.asarray([target])
- assert np.ndim(output) == 1, \\
- ''wrong output size (1D expected)''
- assert np.ndim(target) == 1, \\
- ''wrong target size (1D expected)''
- assert output.shape[0] == target.shape[0], \\
- ''number of outputs and targets does not match''
- assert np.all(np.add(np.equal(target, 1), np.equal(target, 0))), \\
- ''targets should be binary (0,1)''
- self.scores = np.append(self.scores, output)
- self.targets = np.append(self.targets, target)
- def validate_transitions_cpu_old(transitions, **kwargs):
- pre = np.array(transitions[0])
- suc = np.array(transitions[1])
- base = setting[''base'']
- width = pre.shape[1] // base
- height = pre.shape[1] // base
- load(width,height)
- pre_validation = validate_states(pre, **kwargs)
- suc_validation = validate_states(suc, **kwargs)
- results = []
- for pre, suc, pre_validation, suc_validation in zip(pre, suc_validation):
- if pre_validation and suc_validation:
- c = to_configs(np.array([pre, suc]), verbose=False)
- succs = successors(c[0], width, height)
- results.append(np.any(np.all(np.equal(succs, c[1]), axis=1)))
- else:
- results.append(False)
- return results
- def setup():
- setting[''base''] = 14
- def loader(width,height):
- from ..util.mnist import mnist
- base = setting[''base'']
- x_train, y_train, _, _ = mnist()
- filters = [ np.equal(i,y_train) for i in range(9) ]
- imgs = [ x_train[f] for f in filters ]
- panels = [ imgs[0].reshape((28,28)) for imgs in imgs ]
- panels[8] = imgs[8][3].reshape((28,28))
- panels[1] = imgs[8][3].reshape((28,28))
- panels = np.array(panels)
- stepy = panels.shape[1]//base
- stepx = panels.shape[2]//base
- # unfortunately the method below generates "bolder" fonts
- # panels = panels[:,:stepy*base,:stepx*base,]
- # panels = panels.reshape((panels.shape[0],base,stepy,stepx))
- # panels = panels.mean(axis=(2,4))
- # panels = panels.round()
- panels = panels[:,::stepy,::stepx][:,:base,:base].round()
- panels = preprocess(panels)
- return panels
- setting[''loader''] = loader
- def validate_transitions(transitions, check_states=True, **kwargs):
- pre = np.array(transitions[0])
- suc = np.array(transitions[1])
- if check_states:
- pre_validation = validate_states(pre, verbose=False, **kwargs)
- suc_validation = validate_states(suc, **kwargs)
- pre_configs = to_configs(pre, **kwargs)
- suc_configs = to_configs(suc, **kwargs)
- results = []
- if check_states:
- for pre_c, suc_c, suc_validation in zip(pre_configs, suc_configs, suc_validation):
- if pre_validation and suc_validation:
- succs = successors(pre_c)
- results.append(np.any(np.all(np.equal(succs, suc_c), axis=1)))
- else:
- results.append(False)
- else:
- for pre_c, suc_c in zip(pre_configs, suc_configs):
- succs = successors(pre_c)
- results.append(np.any(np.all(np.equal(succs, axis=1)))
- return results
- def validate_transitions(transitions, axis=1)))
- return results
- def equal(x1, x2):
- """
- Return (x1 == x2) element-wise.
- Unlike `numpy.equal`,this comparison is performed by first
- stripping whitespace characters from the end of the string. This
- behavior is provided for backward-compatibility with numarray.
- Parameters
- ----------
- x1,x2 : array_like of str or unicode
- Input arrays of the same shape.
- Returns
- -------
- out : ndarray or bool
- Output array of bools,or a single bool if x1 and x2 are scalars.
- See Also
- --------
- not_equal,greater_equal,less_equal,greater,less
- """
- return compare_chararrays(x1, x2, ''=='', True)
- def not_equal(x1, x2):
- """
- Return (x1 != x2) element-wise.
- Unlike `numpy.not_equal`,or a single bool if x1 and x2 are scalars.
- See Also
- --------
- equal, ''!='', True)
- def greater_equal(x1, x2):
- """
- Return (x1 >= x2) element-wise.
- Unlike `numpy.greater_equal`,this comparison is performed by
- first stripping whitespace characters from the end of the string.
- This behavior is provided for backward-compatibility with
- numarray.
- Parameters
- ----------
- x1,not_equal, ''>='', True)
- def less_equal(x1, x2):
- """
- Return (x1 <= x2) element-wise.
- Unlike `numpy.less_equal`, ''<='', True)
- def greater(x1, x2):
- """
- Return (x1 > x2) element-wise.
- Unlike `numpy.greater`, ''>'', True)
- def test_scalar_none_comparison(self):
- # Scalars should still just return False and not give a warnings.
- # The comparisons are flagged by pep8,ignore that.
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings(''always'', '''', FutureWarning)
- assert_(not np.float32(1) == None)
- assert_(not np.str_(''test'') == None)
- # This is dubIoUs (see below):
- assert_(not np.datetime64(''NaT'') == None)
- assert_(np.float32(1) != None)
- assert_(np.str_(''test'') != None)
- # This is dubIoUs (see below):
- assert_(np.datetime64(''NaT'') != None)
- assert_(len(w) == 0)
- # For documentation purposes,this is why the datetime is dubIoUs.
- # At the time of deprecation this was no behavIoUr change,but
- # it has to be considered when the deprecations are done.
- assert_(np.equal(np.datetime64(''NaT''), None))
- def almost(a, b, decimal=6, fill_value=True):
- """
- Returns True if a and b are equal up to decimal places.
- If fill_value is True,masked values considered equal. Otherwise,
- masked values are considered unequal.
- """
- m = mask_or(getmask(a), getmask(b))
- d1 = filled(a)
- d2 = filled(b)
- if d1.dtype.char == "O" or d2.dtype.char == "O":
- return np.equal(d1, d2).ravel()
- x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_)
- y = filled(masked_array(d2, 1).astype(float_)
- d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal)
- return d.ravel()
- def fail_if_equal(actual, desired, err_msg='''',):
- """
- Raises an assertion error if two items are equal.
- """
- if isinstance(desired, dict):
- if not isinstance(actual, dict):
- raise AssertionError(repr(type(actual)))
- fail_if_equal(len(actual), len(desired), err_msg)
- for k, i in desired.items():
- if k not in actual:
- raise AssertionError(repr(k))
- fail_if_equal(actual[k], desired[k], ''key=%r\\n%s'' % (k, err_msg))
- return
- if isinstance(desired, (list, tuple)) and isinstance(actual, tuple)):
- fail_if_equal(len(actual), err_msg)
- for k in range(len(desired)):
- fail_if_equal(actual[k], ''item=%r\\n%s'' % (k, err_msg))
- return
- if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray):
- return fail_if_array_equal(actual, err_msg)
- msg = build_err_msg([actual, desired], err_msg)
- if not desired != actual:
- raise AssertionError(msg)
- def categorical_accuracy(y_true, y_pred, mask=True):
- ''''''
- categorical_accuracy adjusted for padding mask
- ''''''
- # if mask is not None:
- print y_true
- print y_pred
- eval_shape = (reduce(mul, y_true.shape[:-1]), y_true.shape[-1])
- print eval_shape
- y_true_ = np.reshape(y_true, eval_shape)
- y_pred_ = np.reshape(y_pred, eval_shape)
- flat_mask = np.flatten(mask)
- comped = np.equal(np.argmax(y_true_, axis=-1),
- np.argmax(y_pred_, axis=-1))
- ## not sure how to do this in tensor flow
- good_entries = flat_mask.nonzero()[0]
- return np.mean(np.gather(comped, good_entries))
- # else:
- # return K.mean(K.equal(K.argmax(y_true,axis=-1),
- # K.argmax(y_pred,axis=-1)))
- def __estimate_entropy__(self):
- counts = self.feature_vector_counts #Counter(self.timeline_feature_vectors)
- #print counts
- #N = float(sum(counts.values()))
- N = float(len(self.timeline) + 1)
- max_H = np.log(float(len(list(filter(lambda x: x, counts)))))
- if np.equal(max_H, 0.0):
- return 0.0
- entropy = 0.0
- for key in counts.keys():
- if counts[key] > 0:
- key_probability = counts[key] / N
- entropy += -(key_probability * np.log(key_probability))
- entropy /= max_H
- #print u''N={0},|counts|={3},max_H={1},entropy={2},counter={4}''.format(N,max_H,entropy,len(counts),counts)
- return entropy
- def _f_dice(a, b):
- """DICE between two segmentations.
- Args:
- a: [...,H,W],binary mask
- b: [...,binary mask
- Returns:
- dice: [...]
- """
- card_a = a.sum(axis=-1).sum(axis=-1)
- card_b = b.sum(axis=-1).sum(axis=-1)
- card_ab = (a * b).sum(axis=-1).sum(axis=-1)
- card_sum = card_a + card_b
- dice = 2 * card_ab / (card_sum + np.equal(card_sum, 0).astype(''float32''))
- return dice
- def test_accuracy():
- def cat_acc(y_pred, y_true):
- return np.expand_dims(np.equal(np.argmax(y_pred, np.argmax(y_true, axis=-1)), -1),
- objectives_test(objectives.accuracy,
- cat_acc,
- np_pred=[[0,0,.9], [0,.9,0], [.9,0]],
- np_true=[[0,1],1]])
- def bi_acc(y_pred, y_true):
- return np.equal(np.round(y_pred), y_true)
- objectives_test(objectives.accuracy,
- bi_acc,
- np_pred=[[0], [0.6], [0.7]],
- np_true=[[0], [1], [1]])
- def test_convolutional_embedding_encoder(config, out_data_shape, out_data_length, out_seq_len):
- conv_embed = sockeye.encoder.ConvolutionalEmbeddingEncoder(config)
- data_nd = mx.nd.random_normal(shape=(_BATCH_SIZE, _SEQ_LEN, _NUM_EMbed))
- data = mx.sym.Variable("data", shape=data_nd.shape)
- data_length = mx.sym.Variable("data_length", shape=_DATA_LENGTH_ND.shape)
- (encoded_data,
- encoded_data_length,
- encoded_seq_len) = conv_embed.encode(data=data, data_length=data_length, seq_len=_SEQ_LEN)
- exe = encoded_data.simple_bind(mx.cpu(), data=data_nd.shape)
- exe.forward(data=data_nd)
- assert exe.outputs[0].shape == out_data_shape
- exe = encoded_data_length.simple_bind(mx.cpu(), data_length=_DATA_LENGTH_ND.shape)
- exe.forward(data_length=_DATA_LENGTH_ND)
- assert np.equal(exe.outputs[0].asnumpy(), np.asarray(out_data_length)).all()
- assert encoded_seq_len == out_seq_len
- def equal(x1, True)
- def not_equal(x1, True)
- def greater_equal(x1, True)
- def less_equal(x1, True)
- def greater(x1, True)
- def test_scalar_none_comparison(self):
- # Scalars should still just return False and not give a warnings.
- # The comparisons are flagged by pep8, None))
- def almost(a, decimal) <= 10.0 ** (-decimal)
- return d.ravel()
- def fail_if_equal(actual, err_msg)
- if not desired != actual:
- raise AssertionError(msg)
- def grayscaleimage(self, value):
- try:
- if value.ndim == 2:
- self._grayscaleimage = value
- if (_np.equal(self._x,None).any() or
- _np.equal(self._y,None).any() or
- self._x.size != value.shape[1] or
- self._y.size != value.shape[0]):
- self._x = _np.linspace(1, value.shape[1], value.shape[1])
- self._y = _np.linspace(1, value.shape[0], value.shape[0])
- self.xunits = self.XUNITS
- self.yunits = self.YUNITS
- else:
- pass
- except:
- pass
- def paren_data(T, n_data):
- MAX_COUNT = 10
- n_paren = 10
- n_noise = 10
- inputs = (np.random.rand(T, n_data)* (n_paren * 2 + n_noise)).astype(np.int32)
- counts = np.zeros((n_data, n_paren), dtype=np.int32)
- targets = np.zeros((T, n_data, dtype = np.int32)
- opening_parens = (np.arange(0, n_paren)*2)[None, :]
- closing_parens = opening_parens + 1
- for i in range(T):
- opened = np.equal(inputs[i, :, None], opening_parens)
- counts = np.minimum(MAX_COUNT, counts + opened)
- closed = np.equal(inputs[i, closing_parens)
- counts = np.maximum(0, counts - closed)
- targets[i, :] = counts
- x = np.transpose(inputs, [1,0])
- y = np.transpose(targets,2])
- return x, y
- def is_connect_exist_nn(node_in, node_out, nn):
- """
- check if the connection between node_in and node_out exists
- :param node_in:
- :param node_out:
- :param nn: Neural network instance
- :return: True if exists,False if DNE
- """
- assert type(nn) == NeuralNetwork, "nn must be an instance of Neural Network"
- if nn.connect_genes is None:
- return False
- connect = [node_in, node_out]
- history = nn.connect_genes[:, :2]
- return any(np.equal(connect, history).all(1))
- def equal(x1, True)
- def not_equal(x1, True)
- def greater_equal(x1, True)
- def less_equal(x1, True)
- def greater(x1, True)
- def test_scalar_none_comparison(self):
- # Scalars should still just return false and not give a warnings.
- # The comparisons are flagged by pep8, FutureWarning)
- assert_(not np.float32(1) == None)
- assert_(not np.str_(''test'') == None)
- # This is dubIoUs (see below):
- assert_(not np.datetime64(''NaT'') == None)
- assert_(np.float32(1) != None)
- assert_(np.str_(''test'') != None)
- # This is dubIoUs (see below):
- assert_(np.datetime64(''NaT'') != None)
- assert_(len(w) == 0)
- # For documentaiton purpose,but
- # it has to be considered when the deprecations is done.
- assert_(np.equal(np.datetime64(''NaT''), None))
- def approx(a, fill_value=True, rtol=1e-5, atol=1e-8):
- """
- Returns true if all components of a and b are equal to given tolerances.
- If fill_value is True,
- masked values are considered unequal. The relative error rtol should
- be positive and << 1.0 The absolute error atol comes into play for
- those elements of b that are very small or zero; it says how small a
- must be also.
- """
- m = mask_or(getmask(a), 1).astype(float_)
- d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y))
- return d.ravel()
- def almost(a, decimal) <= 10.0 ** (-decimal)
- return d.ravel()
- def fail_if_equal(actual, err_msg)
- if not desired != actual:
- raise AssertionError(msg)
- def get_same_status(pairs, items, target):
- text_compare = pairs
- item1 = items[[''itemID'', target]]
- item1 = item1.rename(
- columns={
- ''itemID'': ''itemID_1'',
- target: target + ''_1'',
- }
- )
- text_compare = pd.merge(text_compare, item1, how=''left'', on=''itemID_1'', left_index=True)
- item2 = items[[''itemID'', target]]
- item2 = item2.rename(
- columns={
- ''itemID'': ''itemID_2'',
- target: target + ''_2'', item2, on=''itemID_2'', left_index=True)
- text_compare[target + ''_same''] = np.equal(text_compare[target + ''_1''], text_compare[target + ''_2'']).astype(np.int32)
- # print(text_compare[target + ''_same''].describe())
- return text_compare[[''id'', target + ''_same'']]
- def gen_hull(p, p_mask, f_encode, f_probi, options):
- # p: n_sizes * n_samples * data_dim
- n_sizes = p.shape[0]
- n_samples = p.shape[1] if p.ndim == 3 else 1
- hprev = f_encode(p_mask, p) # n_sizes * n_samples * data_dim
- points = numpy.zeros((n_samples, n_sizes), dtype=''int64'')
- h = hprev[-1]
- c = numpy.zeros((n_samples, options[''dim_proj'']), dtype=config.floatX)
- xi = numpy.zeros((n_samples,), dtype=''int64'')
- xi_mask = numpy.ones((n_samples, dtype=config.floatX)
- for i in range(n_sizes):
- h, c, probi = f_probi(p_mask[i], xi, h, hprev, p)
- xi = probi.argmax(axis=0)
- xi *= xi_mask.astype(numpy.int64) # Avoid compatibility problem in numpy 1.10
- xi_mask = (numpy.not_equal(xi, 0)).astype(config.floatX)
- if numpy.equal(xi_mask, 0).all():
- break
- points[:, i] = xi
- return points
- def VOCap(rec,prec):
- mpre = np.zeros([1,2+len(prec)])
- mpre[0,1:len(prec)+1] = prec
- mrec = np.zeros([1,2+len(rec)])
- mrec[0,1:len(rec)+1] = rec
- mrec[0,len(rec)+1] = 1.0
- for i in range(mpre.size-2,-1,-1):
- mpre[0,i] = max(mpre[0,i],mpre[0,i+1])
- i = np.argwhere( ~np.equal( mrec[0,1:], mrec[0,:mrec.shape[1]-1]) )+1
- i = i.flatten()
- # compute area under the curve
- ap = np.sum( np.multiply( np.subtract( mrec[0,i-1]), mpre[0,i] ) )
- return ap
- def equal(x1, True)
- def not_equal(x1, True)
- def greater_equal(x1, True)
2022-08-19:以下go语言代码输出什么?A:equal;B:not equal;C:不确定。 package main import ( “fmt“ “reflect“ )
2022-08-19:以下go语言代码输出什么?A:equal;B:not equal;C:不确定。
package main
import (
"fmt"
"reflect"
)
func main() {
i := 1
j := 1
no1 := &i
no2 := &j
if reflect.DeepEqual(no1, no2) {
fmt.Println("equal")
return
}
fmt.Println("not equal")
}
答案2022-08-19:
答案选A。一半人答对!从 DeepEqual 这个函数名可以看出,它会进行“深度”比较。对于指针类型,它会比较它们指向的值是否相等。因为 i 和 j 的值都是 1,所以结果是 A。详细信息可以查看 DeepEqual 函数的文档。 用来判断两个值是否深度一致:除了类型相同;在可以时(主要是基本类型)会使用 ==,但还会比较array、slice的成员,map的键值对,结构体字段进行深入比对。map的键值对,对键只使用==,但值会继续往深层比对。DeepEqual函数可以正确处理循环的类型。函数类型只有都会nil时才相等;空切片不等于nil切片;还会考虑array、slice的长度、map键值对数。
java – 使用ComparisonChain对Object.equal()u0026u0026 Objects.equal()…与Guava有什么好处
return ComparisonChain.start() .compare(this.id,other.id) .result() == 0;
但是,我也意识到我也可以用这个:
return Objects.equal(this.id,other.id);
而且,当比较链更好的时候,我看不清楚,因为你可以轻松地添加更多的条件,如:
return Objects.equal(this.name,other.name) && Objects.equal(this.number,other.number);
唯一的好处是我可以看到,如果你特别需要一个int返回.它有两个额外的方法调用(起始和结果),并且对于noob来说更复杂.
比较链中有没有明显的好处?
(是的,我也用适当的Objects.hashcode()覆盖哈希码
解决方法
在实现Comparable或Comparator时应该使用它.
Objects.equal只能检查相等.
Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable
如何解决Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: ''numpy.ndarray'' object is not callable?
晚安, 尝试打印以下内容时,我在 jupyter 中遇到了 numpy 问题,并且得到了一个 错误: 需要注意的是python版本是3.8.8。 我先用 spyder 测试它,它运行正确,它给了我预期的结果
使用 Spyder:
import numpy as np
for i in range (5):
n = np.random.rand ()
print (n)
Results
0.6604903457995978
0.8236300859753154
0.16067650689842816
0.6967868357083673
0.4231597934445466
现在有了 jupyter
import numpy as np
for i in range (5):
n = np.random.rand ()
print (n)
-------------------------------------------------- ------
TypeError Traceback (most recent call last)
<ipython-input-78-0c6a801b3ea9> in <module>
2 for i in range (5):
3 n = np.random.rand ()
----> 4 print (n)
TypeError: ''numpy.ndarray'' object is not callable
感谢您对我如何在 Jupyter 中解决此问题的帮助。
非常感谢您抽出宝贵时间。
阿特,约翰”
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)
numpy.random.random & numpy.ndarray.astype & numpy.arange
今天看到这样一句代码:
xb = np.random.random((nb, d)).astype(''float32'') #创建一个二维随机数矩阵(nb行d列)
xb[:, 0] += np.arange(nb) / 1000. #将矩阵第一列的每个数加上一个值
要理解这两句代码需要理解三个函数
1、生成随机数
numpy.random.random(size=None)
size为None时,返回float。
size不为None时,返回numpy.ndarray。例如numpy.random.random((1,2)),返回1行2列的numpy数组
2、对numpy数组中每一个元素进行类型转换
numpy.ndarray.astype(dtype)
返回numpy.ndarray。例如 numpy.array([1, 2, 2.5]).astype(int),返回numpy数组 [1, 2, 2]
3、获取等差数列
numpy.arange([start,]stop,[step,]dtype=None)
功能类似python中自带的range()和numpy中的numpy.linspace
返回numpy数组。例如numpy.arange(3),返回numpy数组[0, 1, 2]
关于Python numpy 模块-equal() 实例源码的问题我们已经讲解完毕,感谢您的阅读,如果还想了解更多关于2022-08-19:以下go语言代码输出什么?A:equal;B:not equal;C:不确定。 package main import ( “fmt“ “reflect“ )、java – 使用ComparisonChain对Object.equal()u0026u0026 Objects.equal()…与Guava有什么好处、Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable、numpy.random.random & numpy.ndarray.astype & numpy.arange等相关内容,可以在本站寻找。
本文标签: