GVKun编程网logo

Python numpy 模块-equal() 实例源码

1

如果您想了解Pythonnumpy模块-equal()实例源码的知识,那么本篇文章将是您的不二之选。同时我们将深入剖析2022-08-19:以下go语言代码输出什么?A:equal;B:notequa

如果您想了解Python numpy 模块-equal() 实例源码的知识,那么本篇文章将是您的不二之选。同时我们将深入剖析2022-08-19:以下go语言代码输出什么?A:equal;B:not equal;C:不确定。 package main import ( “fmt“ “reflect“ )、java – 使用ComparisonChain对Object.equal()u0026u0026 Objects.equal()…与Guava有什么好处、Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable、numpy.random.random & numpy.ndarray.astype & numpy.arange的各个方面,并给出实际的案例分析,希望能帮助到您!

本文目录一览:

Python numpy 模块-equal() 实例源码

Python numpy 模块-equal() 实例源码

Python numpy 模块,equal() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.equal()

项目:STA141C    作者:clarkfitzg    | 项目源码 | 文件源码
  1. def go_nn_kdtree(eps=0, parallel=True):
  2. """
  3. Using a specialized data structure,the KDTree
  4.  
  5. This is not as performant because we''re in a high dimensional space
  6.  
  7. 0.777 accuracy? Should be 0.794
  8. """
  9. n_jobs = 1
  10. if parallel:
  11. n_jobs = -1
  12.  
  13. neighbors = tree.query(Xtest, eps=eps, n_jobs=n_jobs)
  14. predictions = ytrain[neighbors[1]]
  15.  
  16. acc = np.equal(predictions, ytest).mean()
  17. return acc
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
  1. def updateSpots(self, dataSet=None):
  2. if dataSet is None:
  3. dataSet = self.data
  4.  
  5. invalidate = False
  6. if self.opts[''pxMode'']:
  7. mask = np.equal(dataSet[''sourceRect''], None)
  8. if np.any(mask):
  9. invalidate = True
  10. opts = self.getSpotOpts(dataSet[mask])
  11. sourceRect = self.fragmentAtlas.getSymbolCoords(opts)
  12. dataSet[''sourceRect''][mask] = sourceRect
  13.  
  14. self.fragmentAtlas.getAtlas() # generate atlas so source widths are available.
  15.  
  16. dataSet[''width''] = np.array(list(imap(QtCore.QRectF.width, dataSet[''sourceRect''])))/2
  17. dataSet[''targetRect''] = None
  18. self._maxSpotPxWidth = self.fragmentAtlas.max_width
  19. else:
  20. self._maxSpotWidth = 0
  21. self._maxSpotPxWidth = 0
  22. self.measureSpotSizes(dataSet)
  23.  
  24. if invalidate:
  25. self.invalidate()
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
  1. def getSpotOpts(self, recs, scale=1.0):
  2. if recs.ndim == 0:
  3. rec = recs
  4. symbol = rec[''symbol'']
  5. if symbol is None:
  6. symbol = self.opts[''symbol'']
  7. size = rec[''size'']
  8. if size < 0:
  9. size = self.opts[''size'']
  10. pen = rec[''pen'']
  11. if pen is None:
  12. pen = self.opts[''pen'']
  13. brush = rec[''brush'']
  14. if brush is None:
  15. brush = self.opts[''brush'']
  16. return (symbol, size*scale, fn.mkPen(pen), fn.mkBrush(brush))
  17. else:
  18. recs = recs.copy()
  19. recs[''symbol''][np.equal(recs[''symbol''], None)] = self.opts[''symbol'']
  20. recs[''size''][np.equal(recs[''size''], -1)] = self.opts[''size'']
  21. recs[''size''] *= scale
  22. recs[''pen''][np.equal(recs[''pen''], None)] = fn.mkPen(self.opts[''pen''])
  23. recs[''brush''][np.equal(recs[''brush''], None)] = fn.mkBrush(self.opts[''brush''])
  24. return recs
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
  1. def updateSpots(self, dataSet[''sourceRect''])))/2
  2. dataSet[''targetRect''] = None
  3. self._maxSpotPxWidth = self.fragmentAtlas.max_width
  4. else:
  5. self._maxSpotWidth = 0
  6. self._maxSpotPxWidth = 0
  7. self.measureSpotSizes(dataSet)
  8.  
  9. if invalidate:
  10. self.invalidate()
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
  1. def getSpotOpts(self, None)] = fn.mkBrush(self.opts[''brush''])
  2. return recs
项目:mimic3-benchmarks    作者:YerevaNN    | 项目源码 | 文件源码
  1. def calc_metrics(self, data_gen, history, dataset, logs):
  2. y_true = []
  3. predictions = []
  4. for i in range(data_gen.steps):
  5. if self.verbose == 1:
  6. print "\\r\\tdone {}/{}".format(i, data_gen.steps),
  7. (x,y) = next(data_gen)
  8. pred = self.model.predict(x, batch_size=self.batch_size)
  9. if isinstance(x, list) and len(x) == 2: # deep supervision
  10. for m, t, p in zip(x[1].flatten(), y.flatten(), pred.flatten()):
  11. if np.equal(m, 1):
  12. y_true.append(t)
  13. predictions.append(p)
  14. else:
  15. y_true += list(y.flatten())
  16. predictions += list(pred.flatten())
  17. print "\\n"
  18. predictions = np.array(predictions)
  19. predictions = np.stack([1-predictions, predictions], axis=1)
  20. ret = metrics.print_metrics_binary(y_true, predictions)
  21. for k, v in ret.iteritems():
  22. logs[dataset + ''_'' + k] = v
  23. history.append(ret)
项目:tnt    作者:pytorch    | 项目源码 | 文件源码
  1. def add(self, output, target):
  2. if torch.is_tensor(output):
  3. output = output.cpu().squeeze().numpy()
  4. if torch.is_tensor(target):
  5. target = target.cpu().squeeze().numpy()
  6. elif isinstance(target, numbers.Number):
  7. target = np.asarray([target])
  8. assert np.ndim(output) == 1, \\
  9. ''wrong output size (1D expected)''
  10. assert np.ndim(target) == 1, \\
  11. ''wrong target size (1D expected)''
  12. assert output.shape[0] == target.shape[0], \\
  13. ''number of outputs and targets does not match''
  14. assert np.all(np.add(np.equal(target, 1), np.equal(target, 0))), \\
  15. ''targets should be binary (0,1)''
  16.  
  17. self.scores = np.append(self.scores, output)
  18. self.targets = np.append(self.targets, target)
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
  1. def validate_transitions_cpu_old(transitions, **kwargs):
  2. pre = np.array(transitions[0])
  3. suc = np.array(transitions[1])
  4. base = setting[''base'']
  5. width = pre.shape[1] // base
  6. height = pre.shape[1] // base
  7. load(width,height)
  8.  
  9. pre_validation = validate_states(pre, **kwargs)
  10. suc_validation = validate_states(suc, **kwargs)
  11.  
  12. results = []
  13. for pre, suc, pre_validation, suc_validation in zip(pre, suc_validation):
  14.  
  15. if pre_validation and suc_validation:
  16. c = to_configs(np.array([pre, suc]), verbose=False)
  17. succs = successors(c[0], width, height)
  18. results.append(np.any(np.all(np.equal(succs, c[1]), axis=1)))
  19. else:
  20. results.append(False)
  21.  
  22. return results
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
  1. def setup():
  2. setting[''base''] = 14
  3.  
  4. def loader(width,height):
  5. from ..util.mnist import mnist
  6. base = setting[''base'']
  7. x_train, y_train, _, _ = mnist()
  8. filters = [ np.equal(i,y_train) for i in range(9) ]
  9. imgs = [ x_train[f] for f in filters ]
  10. panels = [ imgs[0].reshape((28,28)) for imgs in imgs ]
  11. panels[8] = imgs[8][3].reshape((28,28))
  12. panels[1] = imgs[8][3].reshape((28,28))
  13. panels = np.array(panels)
  14. stepy = panels.shape[1]//base
  15. stepx = panels.shape[2]//base
  16. # unfortunately the method below generates "bolder" fonts
  17. # panels = panels[:,:stepy*base,:stepx*base,]
  18. # panels = panels.reshape((panels.shape[0],base,stepy,stepx))
  19. # panels = panels.mean(axis=(2,4))
  20. # panels = panels.round()
  21. panels = panels[:,::stepy,::stepx][:,:base,:base].round()
  22. panels = preprocess(panels)
  23. return panels
  24.  
  25. setting[''loader''] = loader
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
  1. def validate_transitions(transitions, check_states=True, **kwargs):
  2. pre = np.array(transitions[0])
  3. suc = np.array(transitions[1])
  4.  
  5. if check_states:
  6. pre_validation = validate_states(pre, verbose=False, **kwargs)
  7. suc_validation = validate_states(suc, **kwargs)
  8.  
  9. pre_configs = to_configs(pre, **kwargs)
  10. suc_configs = to_configs(suc, **kwargs)
  11.  
  12. results = []
  13. if check_states:
  14. for pre_c, suc_c, suc_validation in zip(pre_configs, suc_configs, suc_validation):
  15.  
  16. if pre_validation and suc_validation:
  17. succs = successors(pre_c)
  18. results.append(np.any(np.all(np.equal(succs, suc_c), axis=1)))
  19. else:
  20. results.append(False)
  21. else:
  22. for pre_c, suc_c in zip(pre_configs, suc_configs):
  23. succs = successors(pre_c)
  24. results.append(np.any(np.all(np.equal(succs, axis=1)))
  25. return results
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
  1. def validate_transitions(transitions, axis=1)))
  2. return results
项目:radar    作者:amoose136    | 项目源码 | 文件源码
  1. def equal(x1, x2):
  2. """
  3. Return (x1 == x2) element-wise.
  4.  
  5. Unlike `numpy.equal`,this comparison is performed by first
  6. stripping whitespace characters from the end of the string. This
  7. behavior is provided for backward-compatibility with numarray.
  8.  
  9. Parameters
  10. ----------
  11. x1,x2 : array_like of str or unicode
  12. Input arrays of the same shape.
  13.  
  14. Returns
  15. -------
  16. out : ndarray or bool
  17. Output array of bools,or a single bool if x1 and x2 are scalars.
  18.  
  19. See Also
  20. --------
  21. not_equal,greater_equal,less_equal,greater,less
  22. """
  23. return compare_chararrays(x1, x2, ''=='', True)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
  1. def not_equal(x1, x2):
  2. """
  3. Return (x1 != x2) element-wise.
  4.  
  5. Unlike `numpy.not_equal`,or a single bool if x1 and x2 are scalars.
  6.  
  7. See Also
  8. --------
  9. equal, ''!='', True)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
  1. def greater_equal(x1, x2):
  2. """
  3. Return (x1 >= x2) element-wise.
  4.  
  5. Unlike `numpy.greater_equal`,this comparison is performed by
  6. first stripping whitespace characters from the end of the string.
  7. This behavior is provided for backward-compatibility with
  8. numarray.
  9.  
  10. Parameters
  11. ----------
  12. x1,not_equal, ''>='', True)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
  1. def less_equal(x1, x2):
  2. """
  3. Return (x1 <= x2) element-wise.
  4.  
  5. Unlike `numpy.less_equal`, ''<='', True)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
  1. def greater(x1, x2):
  2. """
  3. Return (x1 > x2) element-wise.
  4.  
  5. Unlike `numpy.greater`, ''>'', True)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
  1. def test_scalar_none_comparison(self):
  2. # Scalars should still just return False and not give a warnings.
  3. # The comparisons are flagged by pep8,ignore that.
  4. with warnings.catch_warnings(record=True) as w:
  5. warnings.filterwarnings(''always'', '''', FutureWarning)
  6. assert_(not np.float32(1) == None)
  7. assert_(not np.str_(''test'') == None)
  8. # This is dubIoUs (see below):
  9. assert_(not np.datetime64(''NaT'') == None)
  10.  
  11. assert_(np.float32(1) != None)
  12. assert_(np.str_(''test'') != None)
  13. # This is dubIoUs (see below):
  14. assert_(np.datetime64(''NaT'') != None)
  15. assert_(len(w) == 0)
  16.  
  17. # For documentation purposes,this is why the datetime is dubIoUs.
  18. # At the time of deprecation this was no behavIoUr change,but
  19. # it has to be considered when the deprecations are done.
  20. assert_(np.equal(np.datetime64(''NaT''), None))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
  1. def almost(a, b, decimal=6, fill_value=True):
  2. """
  3. Returns True if a and b are equal up to decimal places.
  4.  
  5. If fill_value is True,masked values considered equal. Otherwise,
  6. masked values are considered unequal.
  7.  
  8. """
  9. m = mask_or(getmask(a), getmask(b))
  10. d1 = filled(a)
  11. d2 = filled(b)
  12. if d1.dtype.char == "O" or d2.dtype.char == "O":
  13. return np.equal(d1, d2).ravel()
  14. x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_)
  15. y = filled(masked_array(d2, 1).astype(float_)
  16. d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal)
  17. return d.ravel()
项目:radar    作者:amoose136    | 项目源码 | 文件源码
  1. def fail_if_equal(actual, desired, err_msg='''',):
  2. """
  3. Raises an assertion error if two items are equal.
  4.  
  5. """
  6. if isinstance(desired, dict):
  7. if not isinstance(actual, dict):
  8. raise AssertionError(repr(type(actual)))
  9. fail_if_equal(len(actual), len(desired), err_msg)
  10. for k, i in desired.items():
  11. if k not in actual:
  12. raise AssertionError(repr(k))
  13. fail_if_equal(actual[k], desired[k], ''key=%r\\n%s'' % (k, err_msg))
  14. return
  15. if isinstance(desired, (list, tuple)) and isinstance(actual, tuple)):
  16. fail_if_equal(len(actual), err_msg)
  17. for k in range(len(desired)):
  18. fail_if_equal(actual[k], ''item=%r\\n%s'' % (k, err_msg))
  19. return
  20. if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray):
  21. return fail_if_array_equal(actual, err_msg)
  22. msg = build_err_msg([actual, desired], err_msg)
  23. if not desired != actual:
  24. raise AssertionError(msg)
项目:TF_MemN2N-tableQA    作者:vendi12    | 项目源码 | 文件源码
  1. def categorical_accuracy(y_true, y_pred, mask=True):
  2. ''''''
  3. categorical_accuracy adjusted for padding mask
  4. ''''''
  5. # if mask is not None:
  6. print y_true
  7. print y_pred
  8. eval_shape = (reduce(mul, y_true.shape[:-1]), y_true.shape[-1])
  9. print eval_shape
  10. y_true_ = np.reshape(y_true, eval_shape)
  11. y_pred_ = np.reshape(y_pred, eval_shape)
  12. flat_mask = np.flatten(mask)
  13. comped = np.equal(np.argmax(y_true_, axis=-1),
  14. np.argmax(y_pred_, axis=-1))
  15. ## not sure how to do this in tensor flow
  16. good_entries = flat_mask.nonzero()[0]
  17. return np.mean(np.gather(comped, good_entries))
  18.  
  19. # else:
  20. # return K.mean(K.equal(K.argmax(y_true,axis=-1),
  21. # K.argmax(y_pred,axis=-1)))
项目:aurora    作者:carnby    | 项目源码 | 文件源码
  1. def __estimate_entropy__(self):
  2. counts = self.feature_vector_counts #Counter(self.timeline_feature_vectors)
  3. #print counts
  4. #N = float(sum(counts.values()))
  5. N = float(len(self.timeline) + 1)
  6. max_H = np.log(float(len(list(filter(lambda x: x, counts)))))
  7.  
  8. if np.equal(max_H, 0.0):
  9. return 0.0
  10.  
  11. entropy = 0.0
  12.  
  13. for key in counts.keys():
  14. if counts[key] > 0:
  15. key_probability = counts[key] / N
  16. entropy += -(key_probability * np.log(key_probability))
  17.  
  18. entropy /= max_H
  19.  
  20. #print u''N={0},|counts|={3},max_H={1},entropy={2},counter={4}''.format(N,max_H,entropy,len(counts),counts)
  21. return entropy
项目:rec-attend-public    作者:renmengye    | 项目源码 | 文件源码
  1. def _f_dice(a, b):
  2. """DICE between two segmentations.
  3.  
  4. Args:
  5. a: [...,H,W],binary mask
  6. b: [...,binary mask
  7.  
  8. Returns:
  9. dice: [...]
  10. """
  11. card_a = a.sum(axis=-1).sum(axis=-1)
  12. card_b = b.sum(axis=-1).sum(axis=-1)
  13. card_ab = (a * b).sum(axis=-1).sum(axis=-1)
  14. card_sum = card_a + card_b
  15. dice = 2 * card_ab / (card_sum + np.equal(card_sum, 0).astype(''float32''))
  16. return dice
项目:keraflow    作者:ipod825    | 项目源码 | 文件源码
  1. def test_accuracy():
  2. def cat_acc(y_pred, y_true):
  3. return np.expand_dims(np.equal(np.argmax(y_pred, np.argmax(y_true, axis=-1)), -1),
  4.  
  5. objectives_test(objectives.accuracy,
  6. cat_acc,
  7. np_pred=[[0,0,.9], [0,.9,0], [.9,0]],
  8. np_true=[[0,1],1]])
  9.  
  10. def bi_acc(y_pred, y_true):
  11. return np.equal(np.round(y_pred), y_true)
  12.  
  13. objectives_test(objectives.accuracy,
  14. bi_acc,
  15. np_pred=[[0], [0.6], [0.7]],
  16. np_true=[[0], [1], [1]])
项目:sockeye    作者:awslabs    | 项目源码 | 文件源码
  1. def test_convolutional_embedding_encoder(config, out_data_shape, out_data_length, out_seq_len):
  2. conv_embed = sockeye.encoder.ConvolutionalEmbeddingEncoder(config)
  3.  
  4. data_nd = mx.nd.random_normal(shape=(_BATCH_SIZE, _SEQ_LEN, _NUM_EMbed))
  5.  
  6. data = mx.sym.Variable("data", shape=data_nd.shape)
  7. data_length = mx.sym.Variable("data_length", shape=_DATA_LENGTH_ND.shape)
  8.  
  9. (encoded_data,
  10. encoded_data_length,
  11. encoded_seq_len) = conv_embed.encode(data=data, data_length=data_length, seq_len=_SEQ_LEN)
  12.  
  13. exe = encoded_data.simple_bind(mx.cpu(), data=data_nd.shape)
  14. exe.forward(data=data_nd)
  15. assert exe.outputs[0].shape == out_data_shape
  16.  
  17. exe = encoded_data_length.simple_bind(mx.cpu(), data_length=_DATA_LENGTH_ND.shape)
  18. exe.forward(data_length=_DATA_LENGTH_ND)
  19. assert np.equal(exe.outputs[0].asnumpy(), np.asarray(out_data_length)).all()
  20.  
  21. assert encoded_seq_len == out_seq_len
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
  1. def equal(x1, True)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
  1. def not_equal(x1, True)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
  1. def greater_equal(x1, True)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
  1. def less_equal(x1, True)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
  1. def greater(x1, True)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
  1. def test_scalar_none_comparison(self):
  2. # Scalars should still just return False and not give a warnings.
  3. # The comparisons are flagged by pep8, None))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
  1. def almost(a, decimal) <= 10.0 ** (-decimal)
  2. return d.ravel()
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
  1. def fail_if_equal(actual, err_msg)
  2. if not desired != actual:
  3. raise AssertionError(msg)
项目:CRIkit2    作者:CoherentRamanNIST    | 项目源码 | 文件源码
  1. def grayscaleimage(self, value):
  2. try:
  3. if value.ndim == 2:
  4. self._grayscaleimage = value
  5. if (_np.equal(self._x,None).any() or
  6. _np.equal(self._y,None).any() or
  7. self._x.size != value.shape[1] or
  8. self._y.size != value.shape[0]):
  9.  
  10. self._x = _np.linspace(1, value.shape[1], value.shape[1])
  11. self._y = _np.linspace(1, value.shape[0], value.shape[0])
  12. self.xunits = self.XUNITS
  13. self.yunits = self.YUNITS
  14.  
  15. else:
  16. pass
  17. except:
  18. pass
项目:GORU-tensorflow    作者:jingli9111    | 项目源码 | 文件源码
  1. def paren_data(T, n_data):
  2. MAX_COUNT = 10
  3. n_paren = 10
  4. n_noise = 10
  5.  
  6. inputs = (np.random.rand(T, n_data)* (n_paren * 2 + n_noise)).astype(np.int32)
  7. counts = np.zeros((n_data, n_paren), dtype=np.int32)
  8. targets = np.zeros((T, n_data, dtype = np.int32)
  9. opening_parens = (np.arange(0, n_paren)*2)[None, :]
  10. closing_parens = opening_parens + 1
  11. for i in range(T):
  12. opened = np.equal(inputs[i, :, None], opening_parens)
  13. counts = np.minimum(MAX_COUNT, counts + opened)
  14. closed = np.equal(inputs[i, closing_parens)
  15. counts = np.maximum(0, counts - closed)
  16. targets[i, :] = counts
  17.  
  18.  
  19. x = np.transpose(inputs, [1,0])
  20. y = np.transpose(targets,2])
  21.  
  22. return x, y
项目:NEAT    作者:suckgeun    | 项目源码 | 文件源码
  1. def is_connect_exist_nn(node_in, node_out, nn):
  2. """
  3. check if the connection between node_in and node_out exists
  4.  
  5. :param node_in:
  6. :param node_out:
  7. :param nn: Neural network instance
  8. :return: True if exists,False if DNE
  9. """
  10.  
  11. assert type(nn) == NeuralNetwork, "nn must be an instance of Neural Network"
  12.  
  13. if nn.connect_genes is None:
  14. return False
  15.  
  16. connect = [node_in, node_out]
  17. history = nn.connect_genes[:, :2]
  18.  
  19. return any(np.equal(connect, history).all(1))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
  1. def equal(x1, True)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
  1. def not_equal(x1, True)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
  1. def greater_equal(x1, True)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
  1. def less_equal(x1, True)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
  1. def greater(x1, True)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
  1. def test_scalar_none_comparison(self):
  2. # Scalars should still just return false and not give a warnings.
  3. # The comparisons are flagged by pep8, FutureWarning)
  4. assert_(not np.float32(1) == None)
  5. assert_(not np.str_(''test'') == None)
  6. # This is dubIoUs (see below):
  7. assert_(not np.datetime64(''NaT'') == None)
  8.  
  9. assert_(np.float32(1) != None)
  10. assert_(np.str_(''test'') != None)
  11. # This is dubIoUs (see below):
  12. assert_(np.datetime64(''NaT'') != None)
  13. assert_(len(w) == 0)
  14.  
  15. # For documentaiton purpose,but
  16. # it has to be considered when the deprecations is done.
  17. assert_(np.equal(np.datetime64(''NaT''), None))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
  1. def approx(a, fill_value=True, rtol=1e-5, atol=1e-8):
  2. """
  3. Returns true if all components of a and b are equal to given tolerances.
  4.  
  5. If fill_value is True,
  6. masked values are considered unequal. The relative error rtol should
  7. be positive and << 1.0 The absolute error atol comes into play for
  8. those elements of b that are very small or zero; it says how small a
  9. must be also.
  10.  
  11. """
  12. m = mask_or(getmask(a), 1).astype(float_)
  13. d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y))
  14. return d.ravel()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
  1. def almost(a, decimal) <= 10.0 ** (-decimal)
  2. return d.ravel()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
  1. def fail_if_equal(actual, err_msg)
  2. if not desired != actual:
  3. raise AssertionError(msg)
项目:kaggle_AVITO_2016    作者:ZFTurbo    | 项目源码 | 文件源码
  1. def get_same_status(pairs, items, target):
  2. text_compare = pairs
  3. item1 = items[[''itemID'', target]]
  4. item1 = item1.rename(
  5. columns={
  6. ''itemID'': ''itemID_1'',
  7. target: target + ''_1'',
  8. }
  9. )
  10. text_compare = pd.merge(text_compare, item1, how=''left'', on=''itemID_1'', left_index=True)
  11. item2 = items[[''itemID'', target]]
  12. item2 = item2.rename(
  13. columns={
  14. ''itemID'': ''itemID_2'',
  15. target: target + ''_2'', item2, on=''itemID_2'', left_index=True)
  16. text_compare[target + ''_same''] = np.equal(text_compare[target + ''_1''], text_compare[target + ''_2'']).astype(np.int32)
  17. # print(text_compare[target + ''_same''].describe())
  18. return text_compare[[''id'', target + ''_same'']]
项目:deeptravel    作者:keon    | 项目源码 | 文件源码
  1. def gen_hull(p, p_mask, f_encode, f_probi, options):
  2. # p: n_sizes * n_samples * data_dim
  3. n_sizes = p.shape[0]
  4. n_samples = p.shape[1] if p.ndim == 3 else 1
  5. hprev = f_encode(p_mask, p) # n_sizes * n_samples * data_dim
  6. points = numpy.zeros((n_samples, n_sizes), dtype=''int64'')
  7. h = hprev[-1]
  8. c = numpy.zeros((n_samples, options[''dim_proj'']), dtype=config.floatX)
  9. xi = numpy.zeros((n_samples,), dtype=''int64'')
  10. xi_mask = numpy.ones((n_samples, dtype=config.floatX)
  11. for i in range(n_sizes):
  12. h, c, probi = f_probi(p_mask[i], xi, h, hprev, p)
  13. xi = probi.argmax(axis=0)
  14. xi *= xi_mask.astype(numpy.int64) # Avoid compatibility problem in numpy 1.10
  15. xi_mask = (numpy.not_equal(xi, 0)).astype(config.floatX)
  16. if numpy.equal(xi_mask, 0).all():
  17. break
  18. points[:, i] = xi
  19. return points
项目:poseval    作者:leonid-pishchulin    | 项目源码 | 文件源码
  1. def VOCap(rec,prec):
  2.  
  3. mpre = np.zeros([1,2+len(prec)])
  4. mpre[0,1:len(prec)+1] = prec
  5. mrec = np.zeros([1,2+len(rec)])
  6. mrec[0,1:len(rec)+1] = rec
  7. mrec[0,len(rec)+1] = 1.0
  8.  
  9. for i in range(mpre.size-2,-1,-1):
  10. mpre[0,i] = max(mpre[0,i],mpre[0,i+1])
  11.  
  12. i = np.argwhere( ~np.equal( mrec[0,1:], mrec[0,:mrec.shape[1]-1]) )+1
  13. i = i.flatten()
  14.  
  15. # compute area under the curve
  16. ap = np.sum( np.multiply( np.subtract( mrec[0,i-1]), mpre[0,i] ) )
  17.  
  18. return ap
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
  1. def equal(x1, True)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
  1. def not_equal(x1, True)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
  1. def greater_equal(x1, True)

2022-08-19:以下go语言代码输出什么?A:equal;B:not equal;C:不确定。 package main import ( “fmt“ “reflect“ )

2022-08-19:以下go语言代码输出什么?A:equal;B:not equal;C:不确定。 package main import ( “fmt“ “reflect“ )

2022-08-19:以下go语言代码输出什么?A:equal;B:not equal;C:不确定。

package main

import (
    "fmt"
    "reflect"
)

func main() {
    i := 1
    j := 1
    no1 := &i
    no2 := &j
    if reflect.DeepEqual(no1, no2) {
        fmt.Println("equal")
        return
    }
    fmt.Println("not equal")
}

答案2022-08-19:

答案选A。一半人答对!从 DeepEqual 这个函数名可以看出,它会进行“深度”比较。对于指针类型,它会比较它们指向的值是否相等。因为 i 和 j 的值都是 1,所以结果是 A。详细信息可以查看 DeepEqual 函数的文档。 用来判断两个值是否深度一致:除了类型相同;在可以时(主要是基本类型)会使用 ==,但还会比较array、slice的成员,map的键值对,结构体字段进行深入比对。map的键值对,对键只使用==,但值会继续往深层比对。DeepEqual函数可以正确处理循环的类型。函数类型只有都会nil时才相等;空切片不等于nil切片;还会考虑array、slice的长度、map键值对数。

java – 使用ComparisonChain对Object.equal()u0026u0026 Objects.equal()…与Guava有什么好处

java – 使用ComparisonChain对Object.equal()u0026u0026 Objects.equal()…与Guava有什么好处

我刚刚开始使用谷歌的番石榴收藏( ComparisonChain和 Objects).在我的pojo中,我正在等待equals方法,所以我先做了这个:
return ComparisonChain.start()
         .compare(this.id,other.id)
         .result() == 0;

但是,我也意识到我也可以用这个:

return Objects.equal(this.id,other.id);

而且,当比较链更好的时候,我看不清楚,因为你可以轻松地添加更多的条件,如:

return Objects.equal(this.name,other.name) 
       && Objects.equal(this.number,other.number);

唯一的好处是我可以看到,如果你特别需要一个int返回.它有两个额外的方法调用(起始和结果),并且对于noob来说更复杂.

比较链中有没有明显的好处?

(是的,我也用适当的Objects.hashcode()覆盖哈希码

解决方法

ComparisonChain允许您通过比较多个属性来检查对象是否小于或大于另一个对象(如通过多个列排序网格).
在实现Comparable或Comparator时应该使用它.

Objects.equal只能检查相等.

Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable

Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable

如何解决Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: ''numpy.ndarray'' object is not callable?

晚安, 尝试打印以下内容时,我在 jupyter 中遇到了 numpy 问题,并且得到了一个 错误: 需要注意的是python版本是3.8.8。 我先用 spyder 测试它,它运行正确,它给了我预期的结果

使用 Spyder:

import numpy as np
    for i in range (5):
        n = np.random.rand ()
    print (n)
Results
0.6604903457995978
0.8236300859753154
0.16067650689842816
0.6967868357083673
0.4231597934445466

现在有了 jupyter

import numpy as np
    for i in range (5):
        n = np.random.rand ()
    print (n)
-------------------------------------------------- ------
TypeError Traceback (most recent call last)
<ipython-input-78-0c6a801b3ea9> in <module>
       2 for i in range (5):
       3 n = np.random.rand ()
---->  4 print (n)

       TypeError: ''numpy.ndarray'' object is not callable

感谢您对我如何在 Jupyter 中解决此问题的帮助。

非常感谢您抽出宝贵时间。

阿特,约翰”

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)

numpy.random.random & numpy.ndarray.astype & numpy.arange

numpy.random.random & numpy.ndarray.astype & numpy.arange

今天看到这样一句代码:

xb = np.random.random((nb, d)).astype(''float32'') #创建一个二维随机数矩阵(nb行d列)
xb[:, 0] += np.arange(nb) / 1000. #将矩阵第一列的每个数加上一个值

要理解这两句代码需要理解三个函数

1、生成随机数

numpy.random.random(size=None) 

size为None时,返回float。

size不为None时,返回numpy.ndarray。例如numpy.random.random((1,2)),返回1行2列的numpy数组

 

2、对numpy数组中每一个元素进行类型转换

numpy.ndarray.astype(dtype)

返回numpy.ndarray。例如 numpy.array([1, 2, 2.5]).astype(int),返回numpy数组 [1, 2, 2]

 

3、获取等差数列

numpy.arange([start,]stop,[step,]dtype=None)

功能类似python中自带的range()和numpy中的numpy.linspace

返回numpy数组。例如numpy.arange(3),返回numpy数组[0, 1, 2]

关于Python numpy 模块-equal() 实例源码的问题我们已经讲解完毕,感谢您的阅读,如果还想了解更多关于2022-08-19:以下go语言代码输出什么?A:equal;B:not equal;C:不确定。 package main import ( “fmt“ “reflect“ )、java – 使用ComparisonChain对Object.equal()u0026u0026 Objects.equal()…与Guava有什么好处、Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable、numpy.random.random & numpy.ndarray.astype & numpy.arange等相关内容,可以在本站寻找。

本文标签: