GVKun编程网logo

on_delete对Django模型有什么作用?(django on_delete)

16

在这篇文章中,我们将为您详细介绍on_delete对Django模型有什么作用?的内容,并且讨论关于djangoon_delete的相关问题。此外,我们还会涉及一些关于04Django模型层:Djan

在这篇文章中,我们将为您详细介绍on_delete对Django模型有什么作用?的内容,并且讨论关于django on_delete的相关问题。此外,我们还会涉及一些关于04 Django模型层: Django-model进阶、Django --- 基表 断关系 related_name on_delete、django 中ForeignKey()中的on_delete参数(转)、Django 外键ForeignKey中的on_delete的知识,以帮助您更全面地了解这个主题。

本文目录一览:

on_delete对Django模型有什么作用?(django on_delete)

on_delete对Django模型有什么作用?(django on_delete)

我对Django非常熟悉,但是最近我注意到on_delete=models.CASCADE模型中存在一个选项。我已经搜索了相同的文档,但是除了以下内容外,我什么也找不到:

在Django 1.9中进行了更改:

on_delete现在可以用作第二个位置参数(以前通常只作为关键字参数传递)。在Django 2.0中,这是必填参数。

一个用法的例子是:

from django.db import modelsclass Car(models.Model):    manufacturer = models.ForeignKey(        ''Manufacturer'',        on_delete=models.CASCADE,    )    # ...class Manufacturer(models.Model):    # ...    pass

on_delete是做什么的?( 我猜想如果删除模型,要执行的操作 。)

怎么models.CASCADE办?( 文档中的任何提示

还有哪些其他选项( 如果我的猜测是正确的 )?

有关此文档的位置在哪里?

答案1

小编典典

这是删除 引用 对象时采取的行为。它不是特定于Django的。这是一个SQL标准。尽管Django在SQL之上有自己的实现。 (1)

发生此类事件时,有七种可能的操作:

  • CASCADE:删除引用的对象后,还请删除对其具有引用的对象(例如,当删除博客文章时,您可能还希望删除注释)。SQL等效项:CASCADE
  • PROTECT:禁止删除引用的对象。要删除它,您将必须删除所有手动引用它的对象。SQL等效项:RESTRICT
  • RESTRICT:( 在Django 3.1中引入)PROTECT与SQLRESTRICT更精确匹配的相似行为。(请参阅django文档示例)
  • SET_NULL:将引用设置为NULL(要求该字段可为空)。例如,当删除用户时,您可能希望保留他在博客文章中发布的评论,但说该评论是由匿名(或已删除)用户发布的。SQL等效项:SET NULL
  • SET_DEFAULT:设置默认值。SQL等效项:SET DEFAULT
  • SET(...):设置给定值。这不是SQL标准的一部分,完全由Django处理。
  • DO_NOTHING:这可能是一个非常糟糕的主意,因为这会在数据库中创建完整性问题(引用实际上不存在的对象)。SQL等效项:NO ACTION(2)

资料来源:Django说明文件

例如,另请参见PostgreSQL文档。

在大多数情况下,这CASCADE是预期的行为,但是对于每个ForeignKey,您应始终问自己在这种情况下的预期行为是什么。PROTECT并且SET_NULL通常很有用。设置CASCADE不应该设置的位置,可以通过简单地删除单个用户来级联删除所有数据库。


附加说明以阐明级联方向

有趣的是,注意到CASCADE行动的方向对于许多人来说并不明确。事实上,这很有趣地看到, 只有
CASCADE行动并不清楚。我知道级联行为可能会造成混淆,但是您必须认为 它与任何其他动作是同一方向
。因此,如果您觉得自己CASCADE不清楚方向,那实际上意味着on_delete您不清楚自己的行为。

在您的数据库中,外键基本上由整数字段表示,该值是外对象的主键。假设您有一个 comment_A 条目,它具有一个 article_B
条目的外键。如果删除条目 comment_A ,那么一切都很好。 article_B 过去一直没有 comment_A
,如果删除了它,也不会打扰。但是,如果您删除 article_B ,那么 comment_A会 慌!它永远都离不开
article_B 并需要它,它是其属性的一部分(article=article_B,但 article_B
是什么?)。这是on_delete确定如何解决此问题的步骤 完整性错误 ,可以这样说:

  • “不!请!不要!我不能没有你!” (据说PROTECTRESTRICT在Django / SQL中)
  • “好吧,如果我不是你的,那我就不是任何人的” (说SET_NULL
  • “再见,我不能没有article_B生活” 自杀(这是CASCADE行为)。
  • “没关系,我有多余的情人,从现在开始我将引用article_C”SET_DEFAULT,甚至SET(...))。
  • “我无法面对现实,即使那是我剩下的唯一事情,我也会继续给你打电话!”DO_NOTHING

我希望它使级联方向更清晰。:)


脚注

(1) Django在SQL之上有自己的实现。并且,正如@
JoeMjr2在下面的注释中提到的那样,Django将不会创建SQL约束。如果希望数据库确保约束(例如,如果数据库被其他应用程序使用,或者您不时挂在数据库控制台中),则可能需要自己手动设置相关约束。在Django中,有一个开放式票证可添加对数据库级别的删除约束的支持。

(2) 实际上,在一种情况下DO_NOTHING可能有用:如果您想跳过Django的实现并自己在数据库级别实现约束。

04 Django模型层: Django-model进阶

04 Django模型层: Django-model进阶

一 QuerySet对象

1.1可切片

使用Python 的切片语法来限制<tt>查询集</tt>记录的数目 。它等同于SQL 的<tt>LIMIT</tt> 和<tt>OFFSET</tt> 子句。

Entry.objects.all()[:5]      # (LIMIT 5)

Entry.objects.all()[5:10]    # (OFFSET 5 LIMIT 5)

不支持负的索引(例如<tt>Entry.objects.all()[-1]</tt>)。通常,<tt>查询集</tt> 的切片返回一个新的<tt>查询集</tt> —— 它不会执行查询。

1.2可迭代

articleList=models.Article.objects.all()



for article in articleList:

    print(article.title)

1.3惰性查询

<tt>查询集</tt> 是惰性执行的 —— 创建<tt>查询集</tt>不会带来任何数据库的访问。你可以将过滤器保持一整天,直到<tt>查询集</tt> 需要求值时,Django 才会真正运行这个查询。

queryResult=models.Article.objects.all() # not hits database

 

print(queryResult) # hits database

 

for article in queryResult:

    print(article.title)    # hits database

 一般来说,只有在“请求”<tt>查询集</tt> 的结果时才会到数据库中去获取它们。当你确实需要结果时,<tt>查询集</tt> 通过访问数据库来求值

1.4缓存机制

每个<tt>查询集</tt>都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。 在一个新创建的<tt>查询集</tt>中,缓存为空。首次对<tt>查询集</tt>进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到<tt>查询集</tt>的缓存中并返回明确请求的结果(例如,如果正在迭代<tt>查询集</tt>,则返回下一个结果)。接下来对该<tt>查询集</tt> 的求值将重用缓存的结果。 请牢记这个缓存行为,因为对<tt>查询集</tt>使用不当的话,它会坑你的。例如,下面的语句创建两个<tt>查询集</tt>,对它们求值,然后扔掉它们:

print([a.title for a in models.Article.objects.all()])

print([a.create_time for a in models.Article.objects.all()])

这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存<tt>查询集</tt>并重新使用它:

queryResult=models.Article.objects.all()

print([a.title for a in queryResult])

print([a.create_time for a in queryResult])

何时查询集不会被缓存?

查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。 例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:

queryset = Entry.objects.all()

print queryset[5] # Queries the database

print queryset[5] # Queries the database again

然而,如果已经对全部查询集求值过,则将检查缓存:

queryset = Entry.objects.all()

[entry for entry in queryset] # Queries the database

print queryset[5] # Uses cache

print queryset[5] # Uses cache

下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:

[entry for entry in queryset]

bool(queryset)

entry in queryset

list(queryset)

注:简单地打印查询集不会填充缓存。

queryResult=models.Article.objects.all()

print(queryResult) #  hits database

print(queryResult) #  hits database

1.5 exists()与iterator()方法

exists:

简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:

if queryResult.exists():

    #SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()

        print("exists...")

iterator:

当queryset非常巨大时,cache会成为问题。 处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。

objs = Book.objects.all().iterator()

# iterator()可以一次只从数据库获取少量数据,这样可以节省内存

for obj in objs:

    print(obj.title)

#BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了

for obj in objs:

    print(obj.title)

当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。 总结: queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。

二 中介模型

处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的<tt>ManyToManyField</tt>  就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。 例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个<tt>ManyToManyField</tt> 表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。 对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的<tt>ManyToManyField</tt> 字段将使用<tt>through</tt> 参数指向中介模型。对于上面的音乐小组的例子,代码如下:

from django.db import models

 

class Person(models.Model):

    name = models.CharField(max_length=128)

 

    def __str__(self):              # __unicode__ on Python 2

        return self.name

 

class Group(models.Model):

    name = models.CharField(max_length=128)

    members = models.ManyToManyField(Person, through=''Membership'')

 

    def __str__(self):              # __unicode__ on Python 2

        return self.name

 

class Membership(models.Model):

    person = models.ForeignKey(Person)

    group = models.ForeignKey(Group)

    date_joined = models.DateField()

    invite_reason = models.CharField(max_length=64)

既然你已经设置好<tt>ManyToManyField</tt> 来使用中介模型(在这个例子中就是<tt>Membership</tt>),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例:

>>> ringo = Person.objects.create(name="Ringo Starr")

>>> paul = Person.objects.create(name="Paul McCartney")

>>> beatles = Group.objects.create(name="The Beatles")

>>> m1 = Membership(person=ringo, group=beatles,

...     date_joined=date(1962, 8, 16),

...     invite_reason="Needed a new drummer.")

>>> m1.save()

>>> beatles.members.all()

[<Person: Ringo Starr>]

>>> ringo.group_set.all()

[<Group: The Beatles>]

>>> m2 = Membership.objects.create(person=paul, group=beatles,

...     date_joined=date(1960, 8, 1),

...     invite_reason="Wanted to form a band.")

>>> beatles.members.all()

[<Person: Ringo Starr>, <Person: Paul McCartney>]

与普通的多对多字段不同,你不能使用<tt>add</tt>、 <tt>create</tt>和赋值语句(比如,<tt>beatles.members = [...]</tt>)来创建关系:

# THIS WILL NOT WORK

>>> beatles.members.add(john)

# NEITHER WILL THIS

>>> beatles.members.create(name="George Harrison")

# AND NEITHER WILL THIS

>>> beatles.members = [john, paul, ringo, george]

为什么不能这样做? 这是因为你不能只创建 <tt>Person</tt>和 <tt>Group</tt>之间的关联关系,你还要指定 <tt>Membership</tt>模型中所需要的所有信息;而简单的<tt>add</tt>、<tt>create</tt> 和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。  <tt>remove()</tt>方法被禁用也是出于同样的原因。但是<tt>clear()</tt> 方法却是可用的。它可以清空某个实例所有的多对多关系:

>>> # Beatles have broken up

>>> beatles.members.clear()

>>> # Note that this deletes the intermediate model instances

>>> Membership.objects.all()

[]

三 查询优化

3.1表数据

class UserInfo(AbstractUser):

    """

    用户信息

    """

    nid = models.BigAutoField(primary_key=True)

    nickname = models.CharField(verbose_name=''昵称'', max_length=32)

    telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name=''手机号码'')

    avatar = models.FileField(verbose_name=''头像'',upload_to = ''avatar/'',default="/avatar/default.png")

    create_time = models.DateTimeField(verbose_name=''创建时间'', auto_now_add=True)

 

    fans = models.ManyToManyField(verbose_name=''粉丝们'',

                                  to=''UserInfo'',

                                  through=''UserFans'',

                                  related_name=''f'',

                                  through_fields=(''user'', ''follower''))

 

    def __str__(self):

        return self.username

 

class UserFans(models.Model):

    """

    互粉关系表

    """

    nid = models.AutoField(primary_key=True)

    user = models.ForeignKey(verbose_name=''博主'', to=''UserInfo'', to_field=''nid'', related_name=''users'')

    follower = models.ForeignKey(verbose_name=''粉丝'', to=''UserInfo'', to_field=''nid'', related_name=''followers'')

 

class Blog(models.Model):

 

    """

    博客信息

    """

    nid = models.BigAutoField(primary_key=True)

    title = models.CharField(verbose_name=''个人博客标题'', max_length=64)

    site = models.CharField(verbose_name=''个人博客后缀'', max_length=32, unique=True)

    theme = models.CharField(verbose_name=''博客主题'', max_length=32)

    user = models.OneToOneField(to=''UserInfo'', to_field=''nid'')

    def __str__(self):

        return self.title

 

class Category(models.Model):

    """

    博主个人文章分类表

    """

    nid = models.AutoField(primary_key=True)

    title = models.CharField(verbose_name=''分类标题'', max_length=32)

 

    blog = models.ForeignKey(verbose_name=''所属博客'', to=''Blog'', to_field=''nid'')

 

class Article(models.Model):

 

    nid = models.BigAutoField(primary_key=True)

    title = models.CharField(max_length=50, verbose_name=''文章标题'')

    desc = models.CharField(max_length=255, verbose_name=''文章描述'')

    read_count = models.IntegerField(default=0)

    comment_count= models.IntegerField(default=0)

    up_count = models.IntegerField(default=0)

    down_count = models.IntegerField(default=0)

    category = models.ForeignKey(verbose_name=''文章类型'', to=''Category'', to_field=''nid'', null=True)

    create_time = models.DateField(verbose_name=''创建时间'')

    blog = models.ForeignKey(verbose_name=''所属博客'', to=''Blog'', to_field=''nid'')

    tags = models.ManyToManyField(

        to="Tag",

        through=''Article2Tag'',

        through_fields=(''article'', ''tag''),

)

 

 

class ArticleDetail(models.Model):

    """

    文章详细表

    """

    nid = models.AutoField(primary_key=True)

    content = models.TextField(verbose_name=''文章内容'', )

 

    article = models.OneToOneField(verbose_name=''所属文章'', to=''Article'', to_field=''nid'')

 

 

class Comment(models.Model):

    """

    评论表

    """

    nid = models.BigAutoField(primary_key=True)

    article = models.ForeignKey(verbose_name=''评论文章'', to=''Article'', to_field=''nid'')

    content = models.CharField(verbose_name=''评论内容'', max_length=255)

    create_time = models.DateTimeField(verbose_name=''创建时间'', auto_now_add=True)

 

    parent_comment = models.ForeignKey(''self'', blank=True, null=True, verbose_name=''父级评论'')

    user = models.ForeignKey(verbose_name=''评论者'', to=''UserInfo'', to_field=''nid'')

 

    up_count = models.IntegerField(default=0)

 

    def __str__(self):

        return self.content

 

class ArticleUpDown(models.Model):

    """

    点赞表

    """

    nid = models.AutoField(primary_key=True)

    user = models.ForeignKey(''UserInfo'', null=True)

    article = models.ForeignKey("Article", null=True)

    models.BooleanField(verbose_name=''是否赞'')

 

class CommentUp(models.Model):

    """

    点赞表

    """

    nid = models.AutoField(primary_key=True)

    user = models.ForeignKey(''UserInfo'', null=True)

    comment = models.ForeignKey("Comment", null=True)

 

 

class Tag(models.Model):

    nid = models.AutoField(primary_key=True)

    title = models.CharField(verbose_name=''标签名称'', max_length=32)

    blog = models.ForeignKey(verbose_name=''所属博客'', to=''Blog'', to_field=''nid'')

 

 

 

class Article2Tag(models.Model):

    nid = models.AutoField(primary_key=True)

    article = models.ForeignKey(verbose_name=''文章'', to="Article", to_field=''nid'')

    tag = models.ForeignKey(verbose_name=''标签'', to="Tag", to_field=''nid'')

3.2 select_related

3.2.1简单使用

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。 select_related 返回一个<tt>QuerySet</tt>,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。 简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。 下面的例子解释了普通查询和<tt>select_related()</tt> 查询的区别。 查询id=2的文章的分类名称,下面是一个标准的查询:

# Hits the database.

article=models.Article.objects.get(nid=2)

 

# Hits the database again to get the related Blog object.

print(article.category.title)

sql执行

''''''

 

SELECT

    "blog_article"."nid",

    "blog_article"."title",

    "blog_article"."desc",

    "blog_article"."read_count",

    "blog_article"."comment_count",

    "blog_article"."up_count",

    "blog_article"."down_count",

    "blog_article"."category_id",

    "blog_article"."create_time",

     "blog_article"."blog_id",

     "blog_article"."article_type_id"

             FROM "blog_article"

             WHERE "blog_article"."nid" = 2; args=(2,)

 

SELECT

     "blog_category"."nid",

     "blog_category"."title",

     "blog_category"."blog_id"

              FROM "blog_category"

              WHERE "blog_category"."nid" = 4; args=(4,)

 

 

''''''

如果我们使用select_related()函数:

articleList=models.Article.objects.select_related("category").all()

 

 

    for article_obj in articleList:

        #  Doesn''t hit the database, because article_obj.category

        #  has been prepopulated in the previous query.

        #不再查询数据库,因为第一次查询,数据已经填充进去了

        print(article_obj.category.title)

sql执行

SELECT

     "blog_article"."nid",

     "blog_article"."title",

     "blog_article"."desc",

     "blog_article"."read_count",

     "blog_article"."comment_count",

     "blog_article"."up_count",

     "blog_article"."down_count",

     "blog_article"."category_id",

     "blog_article"."create_time",

     "blog_article"."blog_id",

     "blog_article"."article_type_id",

 

     "blog_category"."nid",

     "blog_category"."title",

     "blog_category"."blog_id"

 

FROM "blog_article"

LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid");

 

 

3.2.2 多外键查询

这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:

article=models.Article.objects.select_related("category").get(nid=1)

print(article.articledetail)

观察logging结果,发现依然需要查询两次,所以需要改为:

article=models.Article.objects.select_related("category","articledetail").get(nid=1)

print(article.articledetail)

 或者:1.7以后支持链式操作

article=models.Article.objects

             .select_related("category")

             .select_related("articledetail")

             .get(nid=1)  # django 1.7 支持链式操作

print(article.articledetail)

sql执行

SELECT

 

    "blog_article"."nid",

    "blog_article"."title",

    ......

 

    "blog_category"."nid",

    "blog_category"."title",

    "blog_category"."blog_id",

 

    "blog_articledetail"."nid",

    "blog_articledetail"."content",

    "blog_articledetail"."article_id"

 

   FROM "blog_article"

   LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid")

   LEFT OUTER JOIN "blog_articledetail" ON ("blog_article"."nid" = "blog_articledetail"."article_id")

   WHERE "blog_article"."nid" = 1; args=(1,)

3.2.3 深层查询

# 查询id=1的文章的用户姓名

 

    article=models.Article.objects.select_related("blog").get(nid=1)

    print(article.blog.user.username)

 依然需要查询两次: sql查询

SELECT

    "blog_article"."nid",

    "blog_article"."title",

    ......

 

     "blog_blog"."nid",

     "blog_blog"."title",

 

   FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid")

   WHERE "blog_article"."nid" = 1;

 

 

 

 

SELECT

    "blog_userinfo"."password",

    "blog_userinfo"."last_login",

    ......

 

FROM "blog_userinfo"

WHERE "blog_userinfo"."nid" = 1;

这是因为第一次查询没有query到userInfo表,所以,修改如下:

article=models.Article.objects.select_related("blog__user").get(nid=1)

print(article.blog.user.username)

查询的sql

SELECT

 

"blog_article"."nid", "blog_article"."title",

......

 

 "blog_blog"."nid", "blog_blog"."title",

......

 

 "blog_userinfo"."password", "blog_userinfo"."last_login",

......

 

FROM "blog_article"

 

INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid")

 

INNER JOIN "blog_userinfo" ON ("blog_blog"."user_id" = "blog_userinfo"."nid")

WHERE "blog_article"."nid" = 1;

3.2.4 总结

  1. select_related主要针一对一和多对一关系进行优化。
  2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
  3. 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
  4. 没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
  5. 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
  6. 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
  7. Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。

3.3 prefetch_related()

对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。 prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。 prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。

# 查询所有文章关联的所有标签

    article_obj=models.Article.objects.all()

    for i in article_obj:

 

        print(i.tags.all())  #4篇文章: hits database 5

改为prefetch_related:

# 查询所有文章关联的所有标签

    article_obj=models.Article.objects.prefetch_related("tags").all()

    for i in article_obj:

 

        print(i.tags.all())  #4篇文章: hits database 2

查询sql

SELECT "blog_article"."nid",

               "blog_article"."title",

               ......

 

FROM "blog_article";

 

 

 

SELECT

  ("blog_article2tag"."article_id") AS "_prefetch_related_val_article_id",

  "blog_tag"."nid",

  "blog_tag"."title",

  "blog_tag"."blog_id"

   FROM "blog_tag"

  INNER JOIN "blog_article2tag" ON ("blog_tag"."nid" = "blog_article2tag"."tag_id")

  WHERE "blog_article2tag"."article_id" IN (1, 2, 3, 4);

def select_related(self, *fields)

     性能相关:表之间进行join连表操作,一次性获取关联的数据。

     model.tb.objects.all().select_related()

     model.tb.objects.all().select_related(''外键字段'')

     model.tb.objects.all().select_related(''外键字段__外键字段'')



def prefetch_related(self, *lookups)

    性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询在Python代码中实现连表操作。

            # 获取所有用户表

            # 获取用户类型表where id in (用户表中的查到的所有用户ID)

            models.UserInfo.objects.prefetch_related(''外键字段'')







            from django.db.models import Count, Case, When, IntegerField

            Article.objects.annotate(

                numviews=Count(Case(

                    When(readership__what_time__lt=treshold, then=1),

                    output_field=CharField(),

                ))

            )



            students = Student.objects.all().annotate(num_excused_absences=models.Sum(

                models.Case(

                    models.When(absence__type=''Excused'', then=1),

                default=0,

                output_field=models.IntegerField()

            )))

# 加select_related 主动做链表,相当于直接链表把数据全取出来了,

    # 不加:for循环几次,就再次查几次数据库

    # select_related(''author_detail'')参数是fk的字段,可能有多个外键,所以可以写多个

    ret=models.Author.objects.all().select_related(''author_detail'')

    for i in ret:

        print(i.author_detail.addr)

    ret = models.Author.objects.all()

    for i in ret:

        print(i.author_detail.addr)



#     用了fk,但是不做链表,做多次查询,把结果集都放到对象中

#     两次查询,相当于select * from author_detail where nid in [1,2]

    ret=models.Author.objects.all().prefetch_related(''author_detail'')

    for i in ret:

        print(i.author_detail.addr)

# 总结:数据量少,可以用select_related

#     数据量比较多用prefetch_related

四 extra

extra(select=None, where=None, params=None, 

      tables=None, order_by=None, select_params=None)

有些情况下,Django的查询语法难以简单的表达复杂的 <tt>WHERE</tt> 子句,对于这种情况, Django 提供了 <tt>extra()</tt> <tt>QuerySet</tt>修改机制 — 它能在 <tt>QuerySet</tt>生成的SQL从句中注入新子句 extra可以指定一个或多个 <tt>参数</tt>,例如 <tt>select</tt>, <tt>where</tt> or <tt>tables</tt>. 这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做

4.1参数之select

The <tt>select</tt> 参数可以让你在 <tt>SELECT</tt> 从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。

queryResult=models.Article

           .objects.extra(select={''is_recent'': "create_time > ''2017-09-05''"})

结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05. 练习:

# in sqlite:

    article_obj=models.Article.objects

              .filter(nid=1)

              .extra(select={"standard_time":"strftime(''%%Y-%%m-%%d'',create_time)"})

              .values("standard_time","nid","title")

    print(article_obj)

    # <QuerySet [{''title'': ''MongoDb 入门教程'', ''standard_time'': ''2017-09-03'', ''nid'': 1}]>

4.2参数之where / tables

您可以使用<tt>where</tt>定义显式SQL <tt>WHERE</tt>子句 - 也许执行非显式连接。您可以使用<tt>tables</tt>手动将表添加到SQL <tt>FROM</tt>子句。 <tt>where</tt>和<tt>tables</tt>都接受字符串列表。所有<tt>where</tt>参数均为“与”任何其他搜索条件。 举例来讲:

queryResult=models.Article

           .objects.extra(where=[''nid in (1,3) OR title like "py%" '',''nid>2''])

extra, 额外查询条件以及相关表,排序

            

                models.UserInfo.objects.filter(id__gt=1)

                models.UserInfo.objects.all() 

                # id name age ut_id

            

            

                models.UserInfo.objects.extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)

                # a. 映射

                    # select 

                    # select_params=None

                    # select 此处 from 表

                

                # b. 条件

                    # where=None

                    # params=None,

                    # select * from 表 where 此处

                

                # c. 表

                    # tables

                    # select * from 表,此处

                    

                # c. 排序

                    # order_by=None

                    # select * from 表 order by 此处

                

                

                models.UserInfo.objects.extra(

                    select={''newid'':''select count(1) from app01_usertype where id>%s''},

                    select_params=[1,],

                    where = [''age>%s''],

                    params=[18,],

                    order_by=[''-age''],

                    tables=[''app01_usertype'']

                )

                """

                select 

                    app01_userinfo.id,

                    (select count(1) from app01_usertype where id>1) as newid

                from app01_userinfo,app01_usertype

                where 

                    app01_userinfo.age > 18

                order by 

                    app01_userinfo.age desc

                """

                

                result = models.UserInfo.objects.filter(id__gt=1).extra(

                    where=[''app01_userinfo.id < %s''],

                    params=[100,],

                    tables=[''app01_usertype''],

                    order_by=[''-app01_userinfo.id''],

                    select={''uid'':1,''sw'':"select count(1) from app01_userinfo"}

                )

                print(result.query)

                # SELECT (1) AS "uid", (select count(1) from app01_userinfo) AS "sw", "app01_userinfo"."id", "app01_userinfo"."name", "app01_userinfo"."age", "app01_userinfo"."ut_id" FROM "app01_userinfo" , "app01_usertype" WHERE ("app01_userinfo"."id" > 1 AND (app01_userinfo.id < 100)) ORDER BY ("app01_userinfo".id) DESC

# 在对象中加入字段

    ret=models.Author.objects.all().filter(nid__gt=1).extra(select={''n'':''select count(*) from app01_book where nid>%s''},select_params=[1])

    print(ret[0].n)

    print(ret.query)

    # 给字段重命名

    ret=models.Author.objects.all().filter(author_detail__telephone=132234556).extra(select={''bb'':"app01_authordatail.telephone"}).values(''bb'')

    print(ret)

    print(ret.query)

五 原生sql

from django.db import connection, connections



cursor = connection.cursor() # connection=default数据

cursor = connections[''db2''].cursor()



cursor.execute("""SELECT * from auth_user where id = %s""", [1])



row = cursor.fetchone()

row = cursor.fetchall()

ret=models.Author.objects.raw(''select * from app01_author where nid>1'')

    print(ret)

    for i in ret:

        print(i)

    print(ret.query)

    # 会把book的字段放到author对象中

    ret=models.Author.objects.raw(''select * from app01_book where nid>1'')

    print(ret)

    for i in ret:

        print(i.price)

        print(type(i))

六 整体插入

创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:

Entry.objects.bulk_create([

    Entry(headline="Python 3.0 Released"),

    Entry(headline="Python 3.1 Planned")

])

...更优于:

Entry.objects.create(headline="Python 3.0 Released")

Entry.objects.create(headline="Python 3.1 Planned")

注意该方法有很多注意事项,所以确保它适用于你的情况。 这也可以用在ManyToManyFields中,所以:

my_band.members.add(me, my_friend)

...更优于:

my_band.members.add(me)

my_band.members.add(my_friend)

...其中Bands和Artists具有多对多关联。

七 事务操作

# 事务操作

    from django.db import transaction

    with transaction.atomic():

 八 defer和only

defer(''id'',''name''):取出对象,字段除了id和name都有
only(''id'',''name''):取的对象,只有id和name
如果点,依然能点出其它列,但是不要点了,因为取没有的列,会再次查询数据库

ret=models.Author.objects.only(''nid'')

    for i in ret:

        # 查询不在的字段,会再次查询数据库,造成数据库压力大

        print(i.name)

Django --- 基表 断关系 related_name on_delete

[toc]

基表

基表,为抽象表,是专门用来被继承,提供公有字段的,自身不会完成数据库迁移

abstract

class BaseModel(models.Model):
    is_delete = models.BooleanField(default=False)
    create_time = models.DateTimeField(auto_now_add=True)

    class Meta:
        # 设置 abstract = True 来声明基表 作为基表的model 不能在数据库中有对应的表
        abstract = False

外键其他参数(重点)

补充:

一对多 - 外键放多的一方
一对一 - 从逻辑正反向考虑,如作者表与作者详情表,作者删除级联删除详情,详情删除作者依旧存在,所以建议外键在详情表中
多对多 - 外键在查询频率高的一方

db_constraint=False

断关联表关系

1)不会影响连表查询操作效率

2)会提升连表增删改操作效率

3)易于后期数据库表的重构

4)缺点在于:数据库本身没有连表检测,容易出现脏数据,需要通过严格的逻辑避免脏数据的参数(必要的时候管理脏数据)

举例:A依赖B,先插入A记录,该记录对应的B记录没产生,在没有关联的情况下,该操作可以实现,但是数据就是脏数据接着再将B数据添加,脏数据就得到处理了。反过来先操作B后操作A,更满足逻辑思维,一样可以执行。通过逻辑将AB表进行连表查询,不会有任何异常

class Book(BaseModel):
    authors = models.ManyToManyField(to=''Author'', db_constraint=False)
    # db_constraint在外键中控制表关联,默认为True表示关联,设置False表示断开关联

related_name

# related_name在外键中设置外键反向查询的字段名:正向找字段名,反向找related_name值
class Book(BaseModel):
    publish = models.ForeignKey(to=''Publish'', related_name=''books'')
    authors = models.ManyToManyField(to=''Author'', related_name=''books'')

on_delete

on_delete在外键中必须设置,表示级联关系
在Django 1.x下,系统默认提供(值为models.CASCADE),Django 2.x下,必须手动明确
 publish = models.ForeignKey(
        to=''Publish'',
        related_name=''books'',
        db_constraint=False,
        on_delete=models.DO_NOTHING, .......
    )

注:多对多字段不能设置on_delete级联关系,默认为级联,如果要处理级联关系,需要手动明确关系表,处理

关系表中的多个外键

CASCADE:默认值,级联

例子:作者没,详情一定没,存在没意义

DO_NOTHING:外键不会被级联

假设A表依赖B表,B记录删除,A表的外键字段不做任何处理

例子:作者没,书还是作者写的 | 出版社没,书还是该出版社出版的

SET_DEFAULT: 设置为默认值

假设A表依赖B表,B记录删除,A表的外键字段置为default属性设置的值

所以必须配合default属性使用

SET_NULL: 设置为null

假设A表依赖B表,B记录删除,A表的外键字段置为null

所以必须配合null=True属性使用

例子:部门没,部门员工进入未分组部门(注:关联部门表外键可以为空)

django 中ForeignKey()中的on_delete参数(转)

django 中ForeignKey()中的on_delete参数(转)

1.django从1.9开始ForeignKey中的on_delete参数是必须的。

2.案例

 

代码:

  from django.db import models


class Topic(models.Model):
  """用户学习主题"""
  text = models.CharField(max_length=200)
  data_added = models.DateTimeField(auto_now_add=True)
  
  def __str__(self):
    """返回模型的字符串表示"""
    return self.text
    
class Entry(models.Model):
  """学到的有关某个主题的具体知识"""
  topic = models.ForeignKey(Topic)
  text = models.TextField()
  data_added = models.DateTimeField(auto_now_add=True)
  
  class Meta:
    verbose_name_plural = ''entries''
    
  def __str__(self):
    """返回模型的字符串表示"""

    return self.text[:50] + "..."

结果:

解决方案:

将foreignkey的on_delete属性设置为models.CASCADE,即将上面的

topic = models.ForeignKey(Topic) 改为

topic = models.ForeignKey(Topic,on_delete=models.CASCADE)

Django 外键ForeignKey中的on_delete

Django 外键ForeignKey中的on_delete

当你在Django中删除了一个有着外键关联的数据时,比如一个作者和他名下的所有的书的信息,书的外键是作者(一个作者可有好多本书),当你把作者的信息从数据库中删除时,Django提供了一下几个参数来对作者的书的数据进行操作

外键的定义:

1 #models.py
2 class Author(models.Model):
3     name = models.CharField(max_length=128)
4 
5 class Books(models.Model): 
6     name = models.CharField(max_length=128)
7     author = models.ForeignKey("Author", on_delete=models.CASCADE)

 

* CASCADE:删除作者信息一并删除作者名下的所有书的信息;
* PROTECT:删除作者的信息时,采取保护机制,抛出错误:即不删除Books的内容;
* SET_NULL:只有当null=True才将关联的内容置空;
* SET_DEFAULT:设置为默认值;
* SET( ):括号里可以是函数,设置为自己定义的东西;
* DO_NOTHING:字面的意思,啥也不干,你删除你的干我毛线关系

今天关于on_delete对Django模型有什么作用?django on_delete的讲解已经结束,谢谢您的阅读,如果想了解更多关于04 Django模型层: Django-model进阶、Django --- 基表 断关系 related_name on_delete、django 中ForeignKey()中的on_delete参数(转)、Django 外键ForeignKey中的on_delete的相关知识,请在本站搜索。

本文标签: