本文将介绍【LeetCode】10.RegularExpressionMatching的详细情况,特别是关于C++的相关信息。我们将通过案例分析、数据研究等多种方式,帮助您更全面地了解这个主题,同时也
本文将介绍【LeetCode】10. Regular Expression Matching的详细情况,特别是关于C++的相关信息。我们将通过案例分析、数据研究等多种方式,帮助您更全面地了解这个主题,同时也将涉及一些关于*LeetCode 10 Regular Expression Matching 正则表达式、LeetCode - Hard - 10. Regular Expression Matching、LeetCode -- Regular Expression Matching、LeetCode -- Regular Expression Matching 【算法】的知识。
本文目录一览:- 【LeetCode】10. Regular Expression Matching(C++)(leetcode c++ pdf)
- *LeetCode 10 Regular Expression Matching 正则表达式
- LeetCode - Hard - 10. Regular Expression Matching
- LeetCode -- Regular Expression Matching
- LeetCode -- Regular Expression Matching 【算法】
【LeetCode】10. Regular Expression Matching(C++)(leetcode c++ pdf)
地址:https://leetcode.com/problems/regular-expression-matching/
题目:
Given an input string (s) and a pattern (p),implement regular expression matching with support for '.' and '*'.
‘.’ Matches any single character.
‘*’ Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
Note:
s Could be empty and contains only lowercase letters a-z.
p Could be empty and contains only lowercase letters a-z,and characters like . or *.
Example 1:
Input: s = “aa” p = “a”
Output: false
Explanation: “a” does not match the entire string “aa”.
Example 2:
Input: s = “aa” p = “a*”
Output: true
Explanation: ‘*’ means zero or more of the precedeng element,‘a’. Therefore,by repeating ‘a’ once,it becomes “aa”.
Example 3:
Input: s = “ab” p = “.*”
Output: true
Explanation: “.*” means “zero or more (*) of any character (.)”.
Example 4:
Input: s = “aab” p = “cab”
Output: true
Explanation: c can be repeated 0 times,a can be repeated 1 time. Therefore it matches “aab”.
Example 5:
Input: s = “mississippi” p = “misisP*.”
Output: false
理解:
字符串的正则匹配,*可以匹配0个或多个字符,.可以匹配一个任意字符
思路是从头开始匹配,先看s[i]和p[j]是不是相同,或者p[j]=='.',如果是,当前位置是匹配的。
‘*’如果有,必然出现在j+1的位置。
如果p[j+1]=='*',需要判断两种情况。
s[i]开始的字符串和p[j+2]开始的字符串是否匹配,即*匹配了0个字符;
或者s[i]和p[j]是否相同,且s[i+1]和p[j]是否相同,即*匹配了一个字符。
否则,判断s[i]和p[j]是否相同,且s[i+1]和p[j+1]是否相同。
实现1:
最简单的递归实现,由于不停的复制string,效率很低
class Solution {
public:
bool isMatch(string s,string p) {
if (p.empty()) return s.empty();
bool first_match = (!s.empty() && (p.at(0) == s.at(0) || p.at(0) == '.'));
if (p.length() >= 2 && p.at(1) == '*') {
return isMatch(s,p.substr(2)) || (first_match && isMatch(s.substr(1),p));
}
else
return first_match&& isMatch(s.substr(1),p.substr(1));
}
};
实现2:
使用下标,代替了字符串复制
enum class Match {
FALSE,TRUE,UNKNowN
};
class Solution {
vector
public:
bool isMatch(string s,string p) {
result = vector
return dp(0,s,p);
}
bool dp(int i,int j,const string& s,const string& p) {
if (result[i][j] != Match::UNKNowN)
return result[i][j] == Match::TRUE;
bool res;
if (j == p.length())
res = (i == s.length());
else {
bool first_match = i < s.length() && (s.at(i) == p.at(j) || p.at(j) == '.');
if (j + 1 < p.length()&&p.at(j+1)=='*') {
res = dp(i,j + 2,p) || (first_match&&dp(i + 1,j,p));
}
else {
res = first_match&&dp(i + 1,j + 1,p);
}
}
result[i][j] = res ? Match::TRUE : Match::FALSE;
return res;
}
};
实现3:
上面的实现2,还是使用递归的方式,然而前面的位置是与后面的位置有关的,因此可以从后向前,记录后面的判断结果,避免递归调用
class Solution {
vector
public:
bool isMatch(string s,string p) {
dp = vector
dp[s.length()][p.length()] = true;
for (int i = s.length(); i >= 0; --i)
for (int j = p.length() - 1; j >= 0; --j) {
bool first_match = i < s.length() && (s.at(i) == p.at(j) || p.at(j) == '.');
if (j + 1 < p.length() && p.at(j + 1) == '*') {
dp[i][j] = dp[i][j + 2] || (first_match &&dp[i + 1][j]);
}
else {
dp[i][j] = (first_match && dp[i + 1][j + 1]);
}
}
return dp[0][0];
}
};
*LeetCode 10 Regular Expression Matching 正则表达式
题目:
https://leetcode.com/problems/regular-expression-matching/
思路:
(1)DFS
(2)自动机
DFS版本写的比较烂,然后很长逻辑混乱,基本就是出bug补上。。。
592ms
const int DEBUG = 0; class Solution { public: bool match(char a,char b) { return (a == b || b == '.'); } bool isMatch(string s,string p) { if(dfs(s,p,0)) return true; return false; } bool check(string p,int pos) { if( (p.size()-pos) %2 == 0 ){ for(int i=1+pos; i<p.size(); i+=2) if(p[i] != '*')return false; return true; } return false; } bool dfs(string s,string p,int pos) { if(s.size() == 0) { /*if( (pos == p.size()&&p[pos-1]!='*' || (pos == p.size()-1 && p[pos]=='*')) )return true;*/ if( (pos == p.size()&&p[pos-1]!='*' || (check(p,pos+1) && p[pos]=='*')) )return true; //if( (pos == p.size() || (check(p,pos) && p[pos]=='*')) )return true; if(check(p,pos))return true; if(DEBUG) { cout << "s.size() == 0 s=" << s << " p=" << p << " pos=" << pos << endl; } return false; } if(p.size() <= pos) { if(DEBUG) { cout << "p.size() <= pos s=" << s << " p=" << p << " pos=" << pos << endl; } return false; } int ptrs = 0,ptrp = pos; while(ptrs < s.size() && ptrp < p.size() ) { if( match(s[ptrs],p[ptrp]) ) { if(ptrp+2 < p.size() && p[ptrp+1] == '*') { if(dfs(s.substr(ptrs),ptrp+2))return true; } ptrs ++,ptrp ++; continue; } if(p[ptrp] == '*') { if(ptrp >= 1) { if( match(s[ptrs],p[ptrp-1]) ) { return dfs(s.substr(ptrs+1),ptrp) | dfs(s.substr(ptrs),ptrp+1); // | 1 | 0 } else { return dfs(s.substr(ptrs),ptrp+1); } } else { return false; } continue; } //else { if(ptrp+1 < p.size() && p[ptrp+1] == '*'){ //cout << "s=" << s.substr(ptrs) << " p=" << p << " " << ptrp+2 << endl; return dfs(s.substr(ptrs),ptrp+2); } else return false; //} } if( ptrs >= s.size() ){ pos = ptrp; //if( (pos == p.size()&&p[pos-1]!='*') || (pos == p.size()-1 && p[pos]=='*') )return true; //if( (pos == p.size() || (check(p,pos) && p[pos]=='*')) )return true; if( (pos == p.size()&&p[pos-1]!='*' || (check(p,pos+1) && p[pos]=='*')) )return true; if(check(p,pos))return true; return false; } //if(ptrp >= p.size())return false; return false; } };
正则表达式写法:很优雅,但是时间692ms,应该是因为某些可以用循环,但是这里还是递归了
class Solution { public: bool isMatch(string s,string p) { return matchHere(s,p); } bool matchHere(string s,string p) { if(s.size() == 0) { return p.size()==0 || p.size()%2==0&&p[1]=='*'&&matchStar('\0',s,p.substr(2)); } if(p.size() >=2 && p[1]=='*' && matchStar(p[0],p.substr(2))) return true; if(s[0] == p[0] || p[0] == '.') { return matchHere(s.substr(1),p.substr(1)); } return false; } //c* and p has erased c* bool matchStar(char c,string s,string p){ int ptr = -1; do { ++ptr; if(matchHere(s.substr(ptr),p))return true; } while( ptr<s.size() && ( s[ptr]==c || c=='.' ) ); return false; } };
正则表达式的写法参考:
http://hexlee.iteye.com/blog/552361
里面有^和&的处理方法
有空再去练习下怎么DFS写得优雅,比如http://blog.csdn.net/doc_sgl/article/details/12719761
LeetCode - Hard - 10. Regular Expression Matching
Topic
- String
- Dynamic Programming
- Backtracking
Description
https://leetcode.com/problems/regular-expression-matching/
Given an input string (s
) and a pattern (p
), implement regular expression matching with support for ''.''
and ''*''
where:
''.''
Matches any single character.''*''
Matches zero or more of the preceding element. The matching should cover the entire input string (not partial).
Example 1:
Input: s = "aa", p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".
Example 2:
Input: s = "aa", p = "a*"
Output: true
Explanation: ''*'' means zero or more of the preceding element, ''a''. Therefore, by repeating ''a'' once, it becomes "aa".
Example 3:
Input: s = "ab", p = ".*"
Output: true
Explanation: ".*" means "zero or more (*) of any character (.)".
Example 4:
Input: s = "aab", p = "c*a*b"
Output: true
Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore, it matches "aab".
Example 5:
Input: s = "mississippi", p = "mis*is*p*."
Output: false
Constraints:
- 0 <= s.length <= 20
- 0 <= p.length <= 30
s
contains only lowercase English letters.p
contains only lowercase English letters,''.''
, and''*''
.- It is guaranteed for each appearance of the character
''*''
, there will be a previous valid character to match.
Analysis
方法一:动态规划
Consider following example
s=''aab'', p=''c*a*b''
c * a * b
0 1 2 3 4 5
0 y
a 1
a 2
b 3
dp[i][j]
denotes if s.substring(0,i)
is valid for pattern p.substring(0,j)
. For example dp[0][0] == true
(denoted by y in the matrix) because when s and p are both empty they match. So if we somehow base dp[i+1][j+1]
on previos dp[i][j]
''s then the result will be dp[s.length()][p.length()]
So what about the first column? for and empty pattern p=""
only thing that is valid is an empty string s=""
and that is already our dp[0][0]
which is true. That means rest of dp[i][0]
is false.
s=''aab'', p=''c*a*b''
c * a * b
0 1 2 3 4 5
0 y
a 1 n
a 2 n
b 3 n
What about the first row? In other words which pattern p matches empty string s=""
? The answer is either an empty pattern p=""
or a pattern that can represent an empty string such as p="a*"
, p="z*"
or more interestingly a combiation of them as in p="a*b*c*"
. Below for loop is used to populate dp[0][j]
. Note how it uses previous states by checking dp[0][j-2]
for (int j=2; j<=p.length(); j++) {
dp[0][j] = p.charAt(j-1) == ''*'' && dp[0][j-2];
}
At this stage our matrix has become as follows: Notice dp[0][2]
and dp[0][4]
are both true because p="c*"
and p="c*a*"
can both match an empty string.
s=''aab'', p=''c*a*b''
c * a * b
0 1 2 3 4 5
0 y n y n y n
a 1 n
a 2 n
b 3 n
So now we can start our main iteration. It is basically the same, we will iterate all possible s lengths (i) for all possible p lengths (j) and we will try to find a relation based on previous results. Turns out there are two cases.
-
(p.charAt(j-1) == s.charAt(i-1) || p.charAt(j-1) == ''.'')
if the current characters match or pattern has . then the result is determined by the previous statedp[i][j] = dp[i-1][j-1]
. Don''t be confused by thecharAt(j-1) charAt(i-1)
indexes using a -1 offset that is because our dp array is actually one index bigger than our string and pattern lenghts to hold the initial statedp[0][0]
. -
if
p.charAt(j-1) == ''*''
then either it acts as an empty set and the result isdp[i][j] = dp[i][j-2]
or(s.charAt(i-1) == p.charAt(j-2) || p.charAt(j-2) == ''.'')
current char of string equals the char preceding * in pattern so the result isdp[i-1][j]
.
So here is the final state of matrix after we evaluate all elements:
s=''aab'', p=''c*a*b''
c * a * b
0 1 2 3 4 5
0 y n y n y n
a 1 n n n y y n
a 2 n n n n y n
b 3 n n n n n y
Time and space complexity are O(p.length() * s.length())
.
Try to evaluate the matrix by yourself if it is still confusing,
方法二:递归
There are two cases to consider:
First, the second character of p is *
, now p string can match any number of character before *
. if(isMatch(s, p.substring(2))
means we can match the remaining s string, otherwise, we check if the first character matches or not.
Second, if the second character is not *
, we need match character one by one.
Submission
public class RegularExpressionMatching {
//方法一:动态规划
public boolean isMatch1(String s, String p) {
if (p == null || p.length() == 0)
return (s == null || s.length() == 0);
boolean dp[][] = new boolean[s.length() + 1][p.length() + 1];
dp[0][0] = true;
for (int j = 2; j <= p.length(); j++) {
dp[0][j] = p.charAt(j - 1) == ''*'' && dp[0][j - 2];
}
for (int j = 1; j <= p.length(); j++) {
for (int i = 1; i <= s.length(); i++) {
if (p.charAt(j - 1) == s.charAt(i - 1) || p.charAt(j - 1) == ''.'')
dp[i][j] = dp[i - 1][j - 1];
else if (p.charAt(j - 1) == ''*'')
dp[i][j] = dp[i][j - 2]
|| ((s.charAt(i - 1) == p.charAt(j - 2) || p.charAt(j - 2) == ''.'') && dp[i - 1][j]);
}
}
return dp[s.length()][p.length()];
}
//方法二:递归
public boolean isMatch2(String s, String p) {
if (p.length() == 0) {
return s.length() == 0;
}
if (p.length() > 1 && p.charAt(1) == ''*'') { // second char is ''*''
if (isMatch2(s, p.substring(2))) {
return true;
}
if (s.length() > 0 && (p.charAt(0) == ''.'' || s.charAt(0) == p.charAt(0))) {
return isMatch2(s.substring(1), p);
}
return false;
} else { // second char is not ''*''
if (s.length() > 0 && (p.charAt(0) == ''.'' || s.charAt(0) == p.charAt(0))) {
return isMatch2(s.substring(1), p.substring(1));
}
return false;
}
}
}
Test
import static org.junit.Assert.*;
import org.junit.Test;
public class RegularExpressionMatchingTest {
@Test
public void test() {
RegularExpressionMatching obj = new RegularExpressionMatching();
assertFalse(obj.isMatch1("aa", "a"));
assertTrue(obj.isMatch1("aa", "a*"));
assertTrue(obj.isMatch1("ab", ".*"));
assertTrue(obj.isMatch1("aab", "c*a*b"));
assertFalse(obj.isMatch1("mississippi", "mis*is*p*."));
assertFalse(obj.isMatch2("aa", "a"));
assertTrue(obj.isMatch2("aa", "a*"));
assertTrue(obj.isMatch2("ab", ".*"));
assertTrue(obj.isMatch2("aab", "c*a*b"));
assertFalse(obj.isMatch2("mississippi", "mis*is*p*."));
}
}
LeetCode -- Regular Expression Matching
正则表达式匹配:
Implement regular expression matching with support for'.'@H_301_6@and
'*'@H_301_6@.
'.' Matches any single character.
'*' Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
The function prototype should be:
bool isMatch(const char *s,const char *p)
Some examples:
isMatch("aa","a") → false
isMatch("aa","aa") → true
isMatch("aaa","aa") → false
isMatch("aa","a*") → true
isMatch("aa",".*") → true
isMatch("ab",".*") → true
isMatch("aab","c*a*b") → true
class Solution {
public:
bool isMatch(const char *s,const char *p) {
if(p[0] == '\0') return s[0] == '\0';
if(p[0] == '*') return isMatch(s,p + 1);
if(p[1] == '*'){
if(s[0] == '\0') return isMatch(s,p + 2);
if(p[0] == '.') return isMatch(s + 1,p) || isMatch(s,p + 2);
return (s[0] == p[0] && isMatch(s + 1,p)) || isMatch(s,p + 2);
} else {
if(p[0] == '.') return s[0] != '\0' && isMatch(s + 1,p + 1);
return s[0] == p[0] && isMatch(s + 1,p + 1);
}
}
};
LeetCode -- Regular Expression Matching 【算法】
Implement regular expression matching with support for '.'
and '*'
.
'.' Matches any single character.
'*' Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
The function prototype should be:
bool isMatch(const char *s,const char *p)
Some examples:
isMatch("aa","a") → false
isMatch("aa","aa") → true
isMatch("aaa","aa") → false
isMatch("aa","a*") → true
isMatch("aa",".*") → true
isMatch("ab",".*") → true
isMatch("aab","c*a*b") → true
题目要求实现一个可以支持'.'和'*'的正则表示,代码如下:
依题意,我们根据字符串P的下一个字符是否是'*'来分开讨论(见代码第7行)。如果是,那么必须在两字符串当前位置进行比较;否则,让字符串P的当前位置与字符串S的当前及后面各位比较直至不匹配,并开始下一轮的比较。为了避免字符串P的'*'匹配过多的项,还要对S从当前位置开始的子串和P从当前位置后面两位开始的子串进行匹配(样例:a ab* )。
我们今天的关于【LeetCode】10. Regular Expression Matching和C++的分享就到这里,谢谢您的阅读,如果想了解更多关于*LeetCode 10 Regular Expression Matching 正则表达式、LeetCode - Hard - 10. Regular Expression Matching、LeetCode -- Regular Expression Matching、LeetCode -- Regular Expression Matching 【算法】的相关信息,可以在本站进行搜索。
本文标签: