如果您对Python-“gray28”颜色转换为matplotlib颜色和python变颜色感兴趣,那么这篇文章一定是您不可错过的。我们将详细讲解Python-“gray28”颜色转换为matplot
如果您对Python - “gray28”颜色转换为 matplotlib 颜色和python变颜色感兴趣,那么这篇文章一定是您不可错过的。我们将详细讲解Python - “gray28”颜色转换为 matplotlib 颜色的各种细节,并对python变颜色进行深入的分析,此外还有关于25 个常用 Matplotlib 图的 Python 代码,收藏收藏!、Eclipse 中的 Matplotlib.axes 与 matplotlib.pyplot.axes、Help on module matplotlib.cm in matplotlib:、Jupyterlab / Notebook 中的交互式 matplotlib 图(使用 ipympl 的 %matplotlib 小部件)仅工作一次然后消失的实用技巧。
本文目录一览:- Python - “gray28”颜色转换为 matplotlib 颜色(python变颜色)
- 25 个常用 Matplotlib 图的 Python 代码,收藏收藏!
- Eclipse 中的 Matplotlib.axes 与 matplotlib.pyplot.axes
- Help on module matplotlib.cm in matplotlib:
- Jupyterlab / Notebook 中的交互式 matplotlib 图(使用 ipympl 的 %matplotlib 小部件)仅工作一次然后消失
Python - “gray28”颜色转换为 matplotlib 颜色(python变颜色)
如何解决Python - “gray28”颜色转换为 matplotlib 颜色
如何将 TKinter 颜色“gray28”转换为 pyplot 中的相同颜色? 写成“gray28”时它不是有效颜色(从末尾开始的第二行)
root =Tk()
root.title(''Dashboard'')
root.geometry(''1300x690'')
root.resizable(False,False)
frame = Frame(root,width=1300,height=690)
frame.configure(background="gray28")
frame.pack(fill=BOTH,expand=True)
frameChartsLT = Frame(root)
frameChartsLT.place(x=120,y=180)
frameChartsLT.configure(background="gray28")
fig = figure() # create a figure object
fig.set_facecolor(''xkcd:salmon'') #Here I want to change to "gray28"
ax = fig.add_subplot(111) # add an Axes to the figure
25 个常用 Matplotlib 图的 Python 代码,收藏收藏!
作者:zsx_yiyiyi
编辑:python 大本营
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import warnings; warnings.filterwarnings(action= ''once'')
large = 22; med = 16; small = 12
params = { ''axes.titlesize'': large,
''legend.fontsize'': med,
''figure.figsize'': ( 16, 10),
''axes.labelsize'': med,
''axes.titlesize'': med,
''xtick.labelsize'': med,
''ytick.labelsize'': med,
''figure.titlesize'': large}
plt.rcParams.update(params)
plt.style.use( ''seaborn-whitegrid'')
sns.set_style( "white")
%matplotlib inline
# Version
print(mpl.__version__) #> 3.0.0
print(sns.__version__) #> 0.9.0
midwest = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")
# Prepare Data
# Create as many colors as there are unique midwest[''category'']
categories = np.unique(midwest[ ''category''])
colors = [plt.cm.tab10(i/ float(len(categories)-1)) for i in range(len(categories))]
# Draw Plot for Each Category
plt.figure(figsize=(16, 10), dpi= 80, facecolor= ''w'', edgecolor= ''k'')
for i, category in enumerate(categories):
plt.scatter( ''area'', ''poptotal'',
data=midwest.loc[midwest.category==category, :],
s=20, c=colors[i], label=str(category))
# Decorations
plt.gca(). set(xlim=(0.0, 0.1), ylim=(0, 90000),
xlabel= ''Area'', ylabel= ''Population'')
plt.xticks(fontsize=12); plt.yticks(fontsize=12)
plt.title( "Scatterplot of Midwest Area vs Population", fontsize=22)
plt.legend(fontsize=12)
plt.show()
from scipy.spatial import ConvexHull
import warnings; warnings.simplefilter( ''ignore'')
sns.set_style( "white")
# Step 1: Prepare Data
midwest = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")
# As many colors as there are unique midwest[''category'']
categories = np.unique(midwest[ ''category''])
colors = [plt.cm.tab10(i/float(len(categories) -1)) for i in range(len(categories))]
# Step 2: Draw Scatterplot with unique color for each category
fig = plt.figure(figsize=( 16, 10), dpi= 80, facecolor= ''w'', edgecolor= ''k'')
for i, category in enumerate(categories):
plt.scatter( ''area'', ''poptotal'', data=midwest.loc[midwest.category==category, :], s= ''dot_size'', c=colors[i], label=str(category), edgecolors= ''black'', linewidths= .5)
# Step 3: Encircling
# https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot
def encircle(x,y, ax=None, **kw):
if not ax: ax=plt.gca()
p = np.c_[x,y]
hull = ConvexHull(p)
poly = plt.Polygon(p[hull.vertices,:], **kw)
ax.add_patch(poly)
# Select data to be encircled
midwest_encircle_data = midwest.loc[midwest.state== ''IN'', :]
# Draw polygon surrounding vertices
encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec= "k", fc= "gold", alpha= 0.1)
encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec= "firebrick", fc= "none", linewidth= 1.5)
# Step 4: Decorations
plt.gca().set(xlim=( 0.0, 0.1), ylim=( 0, 90000),
xlabel= ''Area'', ylabel= ''Population'')
plt.xticks(fontsize= 12); plt.yticks(fontsize= 12)
plt.title( "Bubble Plot with Encircling", fontsize= 22)
plt.legend(fontsize= 12)
plt.show()
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
df_select = df.loc[df.cyl.isin([4,8]), :]
# Plot
sns.set_style( "white")
gridobj = sns.lmplot(x= "displ", y= "hwy", hue= "cyl", data=df_select,
height=7, aspect=1.6, robust=True, palette=''tab10'',
scatter_kws=dict(s=60, linewidths=.7, edgecolors=''black''))
# Decorations
gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))
plt.title( "Scatterplot with line of best fit grouped by number of cylinders", fontsize=20)
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
df_select = df.loc[df.cyl.isin([4,8]), :]
# Each line in its own column
sns.set_style( "white")
gridobj = sns.lmplot(x= "displ", y= "hwy",
data=df_select,
height=7,
robust=True,
palette=''Set1'',
col= "cyl",
scatter_kws=dict(s=60, linewidths=.7, edgecolors=''black''))
# Decorations
gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))
plt.show()
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
# Draw Stripplot
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
sns.stripplot(df.cty, df.hwy, jitter=0.25, size=8, ax=ax, linewidth=.5)
# Decorations
plt.title(''Use jittered plots to avoid overlapping of points'', fontsize=22)
plt.show()
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
df_counts = df.groupby([ ''hwy'', ''cty'']).size().reset_index(name= ''counts'')
# Draw Stripplot
fig, ax = plt.subplots(figsize=( 16, 10), dpi= 80)
sns.stripplot(df_counts.cty, df_counts.hwy, size=df_counts.counts* 2, ax=ax)
# Decorations
plt.title( ''Counts Plot - Size of circle is bigger as more points overlap'', fontsize= 22)
plt.show()
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
# Create Fig and gridspec
fig = plt.figure(figsize=( 16, 10), dpi= 80)
grid = plt.GridSpec( 4, 4, hspace= 0. 5, wspace= 0. 2)
# Define the axes
ax_main = fig.add_subplot(grid[ :-1, :-1])
ax_right = fig.add_subplot(grid[ :-1, - 1], xticklabels=[], yticklabels=[])
ax_bottom = fig.add_subplot(grid[- 1, 0:-1], xticklabels=[], yticklabels=[])
# Scatterplot on main ax
ax_main.scatter( ''displ'', ''hwy'', s=df.cty* 4, c=df.manufacturer.astype( ''category'').cat.codes, alpha=. 9, data=df, cmap= "tab10", edgecolors= ''gray'', linewidths=. 5)
# histogram on the right
ax_bottom.hist(df.displ, 40, histtype= ''stepfilled'', orientation= ''vertical'', color= ''deeppink'')
ax_bottom.invert_yaxis()
# histogram in the bottom
ax_right.hist(df.hwy, 40, histtype= ''stepfilled'', orientation= ''horizontal'', color= ''deeppink'')
# Decorations
ax_main.set(title= ''Scatterplot with Histograms
displ vs hwy'', xlabel= ''displ'', ylabel= ''hwy'')
ax_main.title.set_fontsize( 20)
for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels() + ax_main.get_yticklabels()):
item.set_fontsize( 14)
xlabels = ax_main.get_xticks().tolist()
ax_main.set_xticklabels(xlabels)
plt.show()
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
# Create Fig and gridspec
fig = plt.figure(figsize=( 16, 10), dpi= 80)
grid = plt.GridSpec( 4, 4, hspace= 0. 5, wspace= 0. 2)
# Define the axes
ax_main = fig.add_subplot(grid[ :-1, :-1])
ax_right = fig.add_subplot(grid[ :-1, - 1], xticklabels=[], yticklabels=[])
ax_bottom = fig.add_subplot(grid[- 1, 0:-1], xticklabels=[], yticklabels=[])
# Scatterplot on main ax
ax_main.scatter( ''displ'', ''hwy'', s=df.cty* 5, c=df.manufacturer.astype( ''category'').cat.codes, alpha=. 9, data=df, cmap= "Set1", edgecolors= ''black'', linewidths=. 5)
# Add a graph in each part
sns.boxplot(df.hwy, ax=ax_right, orient= "v")
sns.boxplot(df.displ, ax=ax_bottom, orient= "h")
# Decorations ------------------
# Remove x axis name for the boxplot
ax_bottom.set(xlabel= '''')
ax_right.set(ylabel= '''')
# Main Title, Xlabel and YLabel
ax_main.set(title= ''Scatterplot with Histograms
displ vs hwy'', xlabel= ''displ'', ylabel= ''hwy'')
# Set font size of different components
ax_main.title.set_fontsize( 20)
for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels() + ax_main.get_yticklabels()):
item.set_fontsize( 14)
plt.show()
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mtcars.csv")
# Plot
plt.figure(figsize=( 12, 10), dpi= 80)
sns.heatmap(df.corr(), xticklabels=df.corr().columns, yticklabels=df.corr().columns, cmap= ''RdYlGn'', center= 0, annot=True)
# Decorations
plt.title( ''Correlogram of mtcars'', fontsize= 22)
plt.xticks(fontsize= 12)
plt.yticks(fontsize= 12)
plt.show()
df = sns.load_dataset(''iris'')
# Plot
plt.figure(figsize=(10,8), dpi= 80)
sns.pairplot(df, kind= "scatter", hue= "species", plot_kws=dict(s=80, edgecolor= "white", linewidth=2.5))
plt.show()
df = sns.load_dataset(''iris'')
# Plot
plt.figure(figsize=(10,8), dpi= 80)
sns.pairplot(df, kind= "reg", hue= "species")
plt.show()
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, [ ''mpg'']]
df[ ''mpg_z''] = (x - x.mean())/x.std()
df[ ''colors''] = [ ''red'' if x < 0 else ''green'' for x in df[ ''mpg_z'']]
df.sort_values( ''mpg_z'', inplace= True)
df.reset_index(inplace= True)
# Draw plot
plt.figure(figsize=( 14, 10), dpi= 80)
plt.hlines(y=df.index, xmin= 0, xmax=df.mpg_z, color=df.colors, alpha= 0.4, linewidth= 5)
# Decorations
plt.gca().set(ylabel= ''$Model$'', xlabel= ''$Mileage$'')
plt.yticks(df.index, df.cars, fontsize= 12)
plt.title( ''Diverging Bars of Car Mileage'', fontdict={ ''size'': 20})
plt.grid(linestyle= ''--'', alpha= 0.5)
plt.show()
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, [ ''mpg'']]
df[ ''mpg_z''] = (x - x.mean())/x.std()
df[ ''colors''] = [ ''red'' if x < 0 else ''green'' for x in df[ ''mpg_z'']]
df.sort_values( ''mpg_z'', inplace= True)
df.reset_index(inplace= True)
# Draw plot
plt.figure(figsize=( 14, 14), dpi= 80)
plt.hlines(y=df.index, xmin= 0, xmax=df.mpg_z)
for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):
t = plt.text(x, y, round(tex, 2), horizontalalignment= ''right'' if x < 0 else ''left'',
verticalalignment= ''center'', fontdict={ ''color'': ''red'' if x < 0 else ''green'', ''size'': 14})
# Decorations
plt.yticks(df.index, df.cars, fontsize= 12)
plt.title( ''Diverging Text Bars of Car Mileage'', fontdict={ ''size'': 20})
plt.grid(linestyle= ''--'', alpha= 0.5)
plt.xlim( -2.5, 2.5)
plt.show()
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, [ ''mpg'']]
df[ ''mpg_z''] = (x - x.mean())/x.std()
df[ ''colors''] = [ ''red'' if x < 0 else ''darkgreen'' for x in df[ ''mpg_z'']]
df.sort_values( ''mpg_z'', inplace= True)
df.reset_index(inplace= True)
# Draw plot
plt.figure(figsize=( 14, 16), dpi= 80)
plt.scatter(df.mpg_z, df.index, s= 450, alpha= .6, color=df.colors)
for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):
t = plt.text(x, y, round(tex, 1), horizontalalignment= ''center'',
verticalalignment= ''center'', fontdict={ ''color'': ''white''})
# Decorations
# Lighten borders
plt.gca().spines[ "top"].set_alpha( .3)
plt.gca().spines[ "bottom"].set_alpha( .3)
plt.gca().spines[ "right"].set_alpha( .3)
plt.gca().spines[ "left"].set_alpha( .3)
plt.yticks(df.index, df.cars)
plt.title( ''Diverging Dotplot of Car Mileage'', fontdict={ ''size'': 20})
plt.xlabel( ''$Mileage$'')
plt.grid(linestyle= ''--'', alpha= 0.5)
plt.xlim( -2.5, 2.5)
plt.show()
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, [ ''mpg'']]
df[ ''mpg_z''] = (x - x.mean())/x.std()
df[ ''colors''] = ''black''
# color fiat differently
df.loc[df.cars == ''Fiat X1-9'', ''colors''] = ''darkorange''
df.sort_values( ''mpg_z'', inplace= True)
df.reset_index(inplace= True)
# Draw plot
import matplotlib.patches as patches
plt.figure(figsize=( 14, 16), dpi= 80)
plt.hlines(y=df.index, xmin= 0, xmax=df.mpg_z, color=df.colors, alpha= 0.4, linewidth= 1)
plt.scatter(df.mpg_z, df.index, color=df.colors, s=[ 600 if x == ''Fiat X1-9'' else 300 for x in df.cars], alpha= 0.6)
plt.yticks(df.index, df.cars)
plt.xticks(fontsize= 12)
# Annotate
plt.annotate( ''Mercedes Models'', xy=( 0.0, 11.0), xytext=( 1.0, 11), xycoords= ''data'',
fontsize= 15, ha= ''center'', va= ''center'',
bbox=dict(boxstyle= ''square'', fc= ''firebrick''),
arrowprops=dict(arrowstyle= ''-[, widthB=2.0, lengthB=1.5'', lw= 2.0, color= ''steelblue''), color= ''white'')
# Add Patches
p1 = patches.Rectangle(( -2.0, -1), width= .3, height= 3, alpha= .2, facecolor= ''red'')
p2 = patches.Rectangle(( 1.5, 27), width= .8, height= 5, alpha= .2, facecolor= ''green'')
plt.gca().add_patch(p1)
plt.gca().add_patch(p2)
# Decorate
plt.title( ''Diverging Bars of Car Mileage'', fontdict={ ''size'': 20})
plt.grid(linestyle= ''--'', alpha= 0.5)
plt.show()
import pandas as pd
# Prepare Data
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/economics.csv", parse_dates=[ ''date'']).head( 100)
x = np.arange(df.shape[ 0])
y_returns = (df.psavert.diff().fillna( 0)/df.psavert.shift( 1)).fillna( 0) * 100
# Plot
plt.figure(figsize=( 16, 10), dpi= 80)
plt.fill_between(x[ 1:], y_returns[ 1:], 0, where=y_returns[ 1:] >= 0, facecolor= ''green'', interpolate= True, alpha= 0.7)
plt.fill_between(x[ 1:], y_returns[ 1:], 0, where=y_returns[ 1:] <= 0, facecolor= ''red'', interpolate= True, alpha= 0.7)
# Annotate
plt.annotate( ''Peak
1975'', xy=( 94.0, 21.0), xytext=( 88.0, 28),
bbox=dict(boxstyle= ''square'', fc= ''firebrick''),
arrowprops=dict(facecolor= ''steelblue'', shrink= 0.05), fontsize= 15, color= ''white'')
# Decorations
xtickvals = [str(m)[: 3].upper()+ "-"+str(y) for y,m in zip(df.date.dt.year, df.date.dt.month_name())]
plt.gca().set_xticks(x[:: 6])
plt.gca().set_xticklabels(xtickvals[:: 6], rotation= 90, fontdict={ ''horizontalalignment'': ''center'', ''verticalalignment'': ''center_baseline''})
plt.ylim( -35, 35)
plt.xlim( 1, 100)
plt.title( "Month Economics Return %", fontsize= 22)
plt.ylabel( ''Monthly returns %'')
plt.grid(alpha= 0.5)
plt.show()
df_raw = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
df = df_raw[[ ''cty'', ''manufacturer'']].groupby( ''manufacturer'').apply( lambda x: x.mean())
df.sort_values( ''cty'', inplace= True)
df.reset_index(inplace= True)
# Draw plot
import matplotlib.patches as patches
fig, ax = plt.subplots(figsize=( 16, 10), facecolor= ''white'', dpi= 80)
ax.vlines(x=df.index, ymin= 0, ymax=df.cty, color= ''firebrick'', alpha= 0.7, linewidth= 20)
# Annotate Text
for i, cty in enumerate(df.cty):
ax.text(i, cty+ 0.5, round(cty, 1), horizontalalignment= ''center'')
# Title, Label, Ticks and Ylim
ax.set_title( ''Bar Chart for Highway Mileage'', fontdict={ ''size'': 22})
ax.set(ylabel= ''Miles Per Gallon'', ylim=( 0, 30))
plt.xticks(df.index, df.manufacturer.str.upper(), rotation= 60, horizontalalignment= ''right'', fontsize= 12)
# Add patches to color the X axis labels
p1 = patches.Rectangle(( .57, -0.005), width= .33, height= .13, alpha= .1, facecolor= ''green'', transform=fig.transFigure)
p2 = patches.Rectangle(( .124, -0.005), width= .446, height= .13, alpha= .1, facecolor= ''red'', transform=fig.transFigure)
fig.add_artist(p1)
fig.add_artist(p2)
plt.show()
df_raw = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
df = df_raw[[ ''cty'', ''manufacturer'']].groupby( ''manufacturer'').apply( lambda x: x.mean())
df.sort_values( ''cty'', inplace= True)
df.reset_index(inplace= True)
# Draw plot
fig, ax = plt.subplots(figsize=( 16, 10), dpi= 80)
ax.vlines(x=df.index, ymin= 0, ymax=df.cty, color= ''firebrick'', alpha= 0.7, linewidth= 2)
ax.scatter(x=df.index, y=df.cty, s= 75, color= ''firebrick'', alpha= 0.7)
# Title, Label, Ticks and Ylim
ax.set_title( ''Lollipop Chart for Highway Mileage'', fontdict={ ''size'': 22})
ax.set_ylabel( ''Miles Per Gallon'')
ax.set_xticks(df.index)
ax.set_xticklabels(df.manufacturer.str.upper(), rotation= 60, fontdict={ ''horizontalalignment'': ''right'', ''size'': 12})
ax.set_ylim( 0, 30)
# Annotate
for row in df.itertuples():
ax.text(row.Index, row.cty+ .5, s=round(row.cty, 2), horizontalalignment= ''center'', verticalalignment= ''bottom'', fontsize= 14)
plt.show()
df_raw = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
df = df_raw[[ ''cty'', ''manufacturer'']].groupby( ''manufacturer'').apply( lambda x: x.mean())
df.sort_values( ''cty'', inplace= True)
df.reset_index(inplace= True)
# Draw plot
fig, ax = plt.subplots(figsize=( 16, 10), dpi= 80)
ax.hlines(y=df.index, xmin= 11, xmax= 26, color= ''gray'', alpha= 0.7, linewidth= 1, linestyles= ''dashdot'')
ax.scatter(y=df.index, x=df.cty, s= 75, color= ''firebrick'', alpha= 0.7)
# Title, Label, Ticks and Ylim
ax.set_title( ''Dot Plot for Highway Mileage'', fontdict={ ''size'': 22})
ax.set_xlabel( ''Miles Per Gallon'')
ax.set_yticks(df.index)
ax.set_yticklabels(df.manufacturer.str.title(), fontdict={ ''horizontalalignment'': ''right''})
ax.set_xlim( 10, 27)
plt.show()
# Import Data
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/gdppercap.csv")
left_label = [str(c) + '', ''+ str(round(y)) for c, y in zip(df.continent, df[''1952''])]
right_label = [str(c) + '', ''+ str(round(y)) for c, y in zip(df.continent, df[''1957''])]
klass = [ ''red'' if (y1-y2) < 0 else ''green'' for y1, y2 in zip(df[''1952''], df[''1957''])]
# draw line
# https://stackoverflow.com/questions/36470343/how-to-draw-a-line-with-matplotlib/36479941
def newline(p1, p2, color=''black''):
ax = plt.gca()
l = mlines.Line2D([p1[ 0],p2[ 0]], [p1[ 1],p2[ 1]], color= ''red'' if p1[ 1]-p2[ 1] > 0 else ''green'', marker= ''o'', markersize= 6)
ax.add_line(l)
return l
fig, ax = plt.subplots( 1, 1,figsize=( 14, 14), dpi= 80)
# Vertical Lines
ax.vlines(x= 1, ymin= 500, ymax= 13000, color= ''black'', alpha= 0.7, linewidth= 1, linestyles= ''dotted'')
ax.vlines(x= 3, ymin= 500, ymax= 13000, color= ''black'', alpha= 0.7, linewidth= 1, linestyles= ''dotted'')
# Points
ax.scatter(y=df[ ''1952''], x=np.repeat( 1, df.shape[ 0]), s= 10, color= ''black'', alpha= 0.7)
ax.scatter(y=df[ ''1957''], x=np.repeat( 3, df.shape[ 0]), s= 10, color= ''black'', alpha= 0.7)
# Line Segmentsand Annotation
for p1, p2, c in zip(df[''1952''], df[''1957''], df[''continent'']):
newline([1,p1], [3,p2])
ax.text(1-0.05, p1, c + '', '' + str(round(p1)), horizontalalignment= ''right'', verticalalignment= ''center'', fontdict={ ''size'': 14})
ax.text( 3+ 0.05, p2, c + '', '' + str(round(p2)), horizontalalignment= ''left'', verticalalignment= ''center'', fontdict={ ''size'': 14})
# ''Before'' and ''After'' Annotations
ax.text( 1-0.05, 13000, ''BEFORE'', horizontalalignment= ''right'', verticalalignment= ''center'', fontdict={ ''size'': 18, ''weight'': 700})
ax.text( 3+ 0.05, 13000, ''AFTER'', horizontalalignment= ''left'', verticalalignment= ''center'', fontdict={ ''size'': 18, ''weight'': 700})
# Decoration
ax.set_title( "Slopechart: Comparing GDP Per Capita between 1952 vs 1957", fontdict={ ''size'': 22})
ax. set(xlim=( 0, 4), ylim=( 0, 14000), ylabel= ''Mean GDP Per Capita'')
ax.set_xticks([ 1, 3])
ax.set_xticklabels([ "1952", "1957"])
plt.yticks(np.arange( 500, 13000, 2000), fontsize= 12)
# Lighten borders
plt.gca().spines[ "top"].set_alpha( .0)
plt.gca().spines[ "bottom"].set_alpha( .0)
plt.gca().spines[ "right"].set_alpha( .0)
plt.gca().spines[ "left"].set_alpha( .0)
plt.show()
# Import Data
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/health.csv")
df.sort_values( ''pct_2014'', inplace= True)
df.reset_index(inplace= True)
# Func to draw line segment
def newline(p1, p2, color=''black''):
ax = plt.gca()
l = mlines.Line2D([p1[ 0],p2[ 0]], [p1[ 1],p2[ 1]], color= ''skyblue'')
ax.add_line(l)
return l
# Figure and Axes
fig, ax = plt.subplots( 1, 1,figsize=( 14, 14), facecolor= ''#f7f7f7'', dpi= 80)
# Vertical Lines
ax.vlines(x= .05, ymin= 0, ymax= 26, color= ''black'', alpha= 1, linewidth= 1, linestyles= ''dotted'')
ax.vlines(x= .10, ymin= 0, ymax= 26, color= ''black'', alpha= 1, linewidth= 1, linestyles= ''dotted'')
ax.vlines(x= .15, ymin= 0, ymax= 26, color= ''black'', alpha= 1, linewidth= 1, linestyles= ''dotted'')
ax.vlines(x= .20, ymin= 0, ymax= 26, color= ''black'', alpha= 1, linewidth= 1, linestyles= ''dotted'')
# Points
ax.scatter(y=df[ ''index''], x=df[ ''pct_2013''], s= 50, color= ''#0e668b'', alpha= 0.7)
ax.scatter(y=df[ ''index''], x=df[ ''pct_2014''], s= 50, color= ''#a3c4dc'', alpha= 0.7)
# Line Segments
for i, p1, p2 in zip(df[ ''index''], df[ ''pct_2013''], df[ ''pct_2014'']):
newline([p1, i], [p2, i])
# Decoration
ax.set_facecolor( ''#f7f7f7'')
ax.set_title( "Dumbell Chart: Pct Change - 2013 vs 2014", fontdict={ ''size'': 22})
ax.set(xlim=( 0, .25), ylim=( -1, 27), ylabel= ''Mean GDP Per Capita'')
ax.set_xticks([ .05, .1, .15, .20])
ax.set_xticklabels([ ''5%'', ''15%'', ''20%'', ''25%''])
ax.set_xticklabels([ ''5%'', ''15%'', ''20%'', ''25%''])
plt.show()
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
# Prepare data
x_var = ''displ''
groupby_var = ''class''
df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var)
vals = [df[x_var].values.tolist() for i, df in df_agg]
# Draw
plt.figure(figsize=( 16, 9), dpi= 80)
colors = [plt.cm.Spectral(i/ float(len(vals) -1)) for i in range(len(vals))]
n, bins, patches = plt.hist(vals, 30, stacked=True, density=False, color=colors[:len(vals)])
# Decoration
plt.legend({ group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])})
plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22)
plt.xlabel(x_var)
plt.ylabel("Frequency")
plt.ylim(0, 25)
plt.xticks(ticks=bins[::3], labels=[round(b,1) for b in bins[::3]])
plt.show()
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
# Prepare data
x_var = ''manufacturer''
groupby_var = ''class''
df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var)
vals = [df[x_var].values.tolist() for i, df in df_agg]
# Draw
plt.figure(figsize=( 16, 9), dpi= 80)
colors = [plt.cm.Spectral(i/ float(len(vals) -1)) for i in range(len(vals))]
n, bins, patches = plt.hist(vals, df[x_var].unique().__len__(), stacked=True, density=False, color=colors[:len(vals)])
# Decoration
plt.legend({ group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])})
plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22)
plt.xlabel(x_var)
plt.ylabel("Frequency")
plt.ylim(0, 40)
plt.xticks(ticks=bins, labels=np.unique(df[x_var]).tolist(), rotation= 90, horizontalalignment= ''left'')
plt.show()
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=( 16, 10), dpi= 80)
sns.kdeplot(df.loc[df[ ''cyl''] == 4, "cty"], shade= True, color= "g", label= "Cyl=4", alpha= .7)
sns.kdeplot(df.loc[df[ ''cyl''] == 5, "cty"], shade= True, color= "deeppink", label= "Cyl=5", alpha= .7)
sns.kdeplot(df.loc[df[ ''cyl''] == 6, "cty"], shade= True, color= "dodgerblue", label= "Cyl=6", alpha= .7)
sns.kdeplot(df.loc[df[ ''cyl''] == 8, "cty"], shade= True, color= "orange", label= "Cyl=8", alpha= .7)
# Decoration
plt.title( ''Density Plot of City Mileage by n_Cylinders'', fontsize= 22)
plt.legend()
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=(13,10), dpi= 80)
sns.distplot(df.loc[df[ ''class''] == ''compact'', "cty"], color= "dodgerblue", label= "Compact", hist_kws={ ''alpha'':.7}, kde_kws={ ''linewidth'':3})
sns.distplot(df.loc[df[ ''class''] == ''suv'', "cty"], color= "orange", label= "SUV", hist_kws={ ''alpha'':.7}, kde_kws={ ''linewidth'':3})
sns.distplot(df.loc[df[ ''class''] == ''minivan'', "cty"], color= "g", label= "minivan", hist_kws={ ''alpha'':.7}, kde_kws={ ''linewidth'':3})
plt.ylim(0, 0.35)
# Decoration
plt.title( ''Density Plot of City Mileage by Vehicle Type'', fontsize=22)
plt.legend()
plt.show()
# Import Data
mpg = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=( 16, 10), dpi= 80)
fig, axes = joypy.joyplot(mpg, column=[ ''hwy'', ''cty''], by= "class", ylim= ''own'', figsize=( 14, 10))
# Decoration
plt.title( ''Joy Plot of City and Highway Mileage by Class'', fontsize= 22)
plt.show()
# Prepare Data
df_raw = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
cyl_colors = { 4: ''tab:red'', 5: ''tab:green'', 6: ''tab:blue'', 8: ''tab:orange''}
df_raw[ ''cyl_color''] = df_raw.cyl.map(cyl_colors)
# Mean and Median city mileage by make
df = df_raw[[ ''cty'', ''manufacturer'']].groupby( ''manufacturer'').apply( lambda x: x.mean())
df.sort_values( ''cty'', ascending= False, inplace= True)
df.reset_index(inplace= True)
df_median = df_raw[[ ''cty'', ''manufacturer'']].groupby( ''manufacturer'').apply( lambda x: x.median())
# Draw horizontal lines
fig, ax = plt.subplots(figsize=( 16, 10), dpi= 80)
ax.hlines(y=df.index, xmin= 0, xmax= 40, color= ''gray'', alpha= 0.5, linewidth= .5, linestyles= ''dashdot'')
# Draw the Dots
for i, make in enumerate(df.manufacturer):
df_make = df_raw.loc[df_raw.manufacturer==make, :]
ax.scatter(y=np.repeat(i, df_make.shape[ 0]), x= ''cty'', data=df_make, s= 75, edgecolors= ''gray'', c= ''w'', alpha= 0.5)
ax.scatter(y=i, x= ''cty'', data=df_median.loc[df_median.index==make, :], s= 75, c= ''firebrick'')
# Annotate
ax.text( 33, 13, "$red ; dots ; are ; the : median$", fontdict={ ''size'': 12}, color= ''firebrick'')
# Decorations
red_patch = plt.plot([],[], marker= "o", ms= 10, ls= "", mec= None, color= ''firebrick'', label= "Median")
plt.legend(handles=red_patch)
ax.set_title( ''Distribution of City Mileage by Make'', fontdict={ ''size'': 22})
ax.set_xlabel( ''Miles Per Gallon (City)'', alpha= 0.7)
ax.set_yticks(df.index)
ax.set_yticklabels(df.manufacturer.str.title(), fontdict={ ''horizontalalignment'': ''right''}, alpha= 0.7)
ax.set_xlim( 1, 40)
plt.xticks(alpha= 0.7)
plt.gca().spines[ "top"].set_visible( False)
plt.gca().spines[ "bottom"].set_visible( False)
plt.gca().spines[ "right"].set_visible( False)
plt.gca().spines[ "left"].set_visible( False)
plt.grid(axis= ''both'', alpha= .4, linewidth= .1)
plt.show()
1、GitHub 发布重磅更新:你电脑上的 IDE 可以删了?!
2、B 站上爆红的数学视频,居然是用基于 Python 的这个开源项目做的
3、60 个相见恨晚的神器工具
4、这些绘制炫酷地图的方法,你了解多少?
不日进,则日退
本文分享自微信公众号 - 极客猴(Geek_monkey)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与 “OSC 源创计划”,欢迎正在阅读的你也加入,一起分享。
Eclipse 中的 Matplotlib.axes 与 matplotlib.pyplot.axes
如何解决Eclipse 中的 Matplotlib.axes 与 matplotlib.pyplot.axes
我试图理解为什么我的代码无法在 Eclipse IDE 中使用“.”运算符完成,即使代码运行成功。代码如下:
import matplotlib.pyplot as plt
# I can use either of these and get the same result.
# ax = plt.subplot() #(1)
ax = plt.gca() #(2)
ax.plot(people,total_cost,color = ''red'') #(3)
ax.set_xlabel(''# People'') #(4)
ax.set_ylabel(''Cost\\n(Parking)\\t(ticket)'') #(5)
我不明白的是,虽然语句 (4) 和 (5) 相应地绘制了图形,但 ''ax'' 的属性根本不是来自 ''pyplot.axes'' 类,而是来自 ''matplotlib.axes'' 类。轴类。语句(3)是来自pyplot.axes的调用
接下来就是问题了。
- 为什么我不能使用“.”运算符来完成代码,即使每个在 (3)、(4) 和 (5) 中都是有效的语句?
2 虽然 ‘ax’ 可以定义为来自 ‘pyplot.axes’ 类的 (1) 或 (2),但语句 (3) 来自 ‘matplotlib.axes’ 类。那么如何成功调用两个类而不声明一个类作为 (1) 或 (2) 的结果?
- 就像注释一样,“matplotlib.axes”和“matplotlib.pyplot.axes”的参数似乎相同。
感谢您的帮助。
matplotlib.pyplot.plot https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
matplotlib.pyplot.axes https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.axes.html
matplotlib.axes https://matplotlib.org/stable/api/axes_api.html
解决方法
matplotlib.pyplot.axes
是一个函数,而不是一个类。它创建 matplotlib.axes.Axes
类的一个实例,将其添加到当前图形,并使其成为当前轴。
matplotlib.axes
是一个模块,而不是一个类。它包含 matplotlib.axes.Axes
类,当您调用函数来创建 Axes 实例时会创建该类,例如 plt.subplots()
、fig.add_axes()
、plt.gca()
等。>
因此,无论您使用哪种方法 (1) 或 (2),您的 ax
都将是一个 matplotlib.axes.Axes
实例。
Help on module matplotlib.cm in matplotlib:
Help on module matplotlib.cm in matplotlib:
NAME
matplotlib.cm
FILE
d:\programdata\anaconda2\lib\site-packages\matplotlib\cm.py
DESCRIPTION
This module provides a large set of colormaps, functions for
registering new colormaps and for getting a colormap by name,
and a mixin class for adding color mapping functionality.
CLASSES
__builtin__.object
ScalarMappable
class ScalarMappable(__builtin__.object)
| This is a mixin class to support scalar data to RGBA mapping.
| The ScalarMappable makes use of data normalization before returning
| RGBA colors from the given colormap.
|
| Methods defined here:
|
| __init__(self, norm=None, cmap=None)
| Parameters
| ----------
| norm : :class:`matplotlib.colors.Normalize` instance
| The normalizing object which scales data, typically into the
| interval ``[0, 1]``.
| If *None*, *norm* defaults to a *colors.Normalize* object which
| initializes its scaling based on the first data processed.
| cmap : str or :class:`~matplotlib.colors.Colormap` instance
| The colormap used to map normalized data values to RGBA colors.
|
| add_checker(self, checker)
| Add an entry to a dictionary of boolean flags
| that are set to True when the mappable is changed.
|
| autoscale(self)
| Autoscale the scalar limits on the norm instance using the
| current array
|
| autoscale_None(self)
| Autoscale the scalar limits on the norm instance using the
| current array, changing only limits that are None
|
| changed(self)
| Call this whenever the mappable is changed to notify all the
| callbackSM listeners to the ''changed'' signal
|
| check_update(self, checker)
| If mappable has changed since the last check,
| return True; else return False
|
| get_array(self)
| Return the array
|
| get_clim(self)
| return the min, max of the color limits for image scaling
|
| get_cmap(self)
| return the colormap
|
| set_array(self, A)
| Set the image array from numpy array *A*.
|
| ..
| ACCEPTS: ndarray
|
| Parameters
| ----------
| A : ndarray
|
| set_clim(self, vmin=None, vmax=None)
| set the norm limits for image scaling; if *vmin* is a length2
| sequence, interpret it as ``(vmin, vmax)`` which is used to
| support setp
|
| ACCEPTS: a length 2 sequence of floats
|
| set_cmap(self, cmap)
| set the colormap for luminance data
|
| ACCEPTS: a colormap or registered colormap name
|
| set_norm(self, norm)
| Set the normalization instance.
|
| ..
| ACCEPTS: `~.Normalize`
|
| Parameters
| ----------
| norm : `~.Normalize`
|
| to_rgba(self, x, alpha=None, bytes=False, norm=True)
| Return a normalized rgba array corresponding to *x*.
|
| In the normal case, *x* is a 1-D or 2-D sequence of scalars, and
| the corresponding ndarray of rgba values will be returned,
| based on the norm and colormap set for this ScalarMappable.
|
| There is one special case, for handling images that are already
| rgb or rgba, such as might have been read from an image file.
| If *x* is an ndarray with 3 dimensions,
| and the last dimension is either 3 or 4, then it will be
| treated as an rgb or rgba array, and no mapping will be done.
| The array can be uint8, or it can be floating point with
| values in the 0-1 range; otherwise a ValueError will be raised.
| If it is a masked array, the mask will be ignored.
| If the last dimension is 3, the *alpha* kwarg (defaulting to 1)
| will be used to fill in the transparency. If the last dimension
| is 4, the *alpha* kwarg is ignored; it does not
| replace the pre-existing alpha. A ValueError will be raised
| if the third dimension is other than 3 or 4.
|
| In either case, if *bytes* is *False* (default), the rgba
| array will be floats in the 0-1 range; if it is *True*,
| the returned rgba array will be uint8 in the 0 to 255 range.
|
| If norm is False, no normalization of the input data is
| performed, and it is assumed to be in the range (0-1).
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
FUNCTIONS
get_cmap(name=None, lut=None)
Get a colormap instance, defaulting to rc values if *name* is None.
Colormaps added with :func:`register_cmap` take precedence over
built-in colormaps.
If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be
returned.
If *lut* is not None it must be an integer giving the number of
entries desired in the lookup table, and *name* must be a standard
mpl colormap name.
register_cmap(name=None, cmap=None, data=None, lut=None)
Add a colormap to the set recognized by :func:`get_cmap`.
It can be used in two ways::
register_cmap(name=''swirly'', cmap=swirly_cmap)
register_cmap(name=''choppy'', data=choppydata, lut=128)
In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap`
instance. The *name* is optional; if absent, the name will
be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*.
In the second case, the three arguments are passed to
the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer,
and the resulting colormap is registered.
revcmap(data)
Can only handle specification *data* in dictionary format.
DATA
Accent = <matplotlib.colors.ListedColormap object>
Accent_r = <matplotlib.colors.ListedColormap object>
Blues = <matplotlib.colors.LinearSegmentedColormap object>
Blues_r = <matplotlib.colors.LinearSegmentedColormap object>
BrBG = <matplotlib.colors.LinearSegmentedColormap object>
BrBG_r = <matplotlib.colors.LinearSegmentedColormap object>
BuGn = <matplotlib.colors.LinearSegmentedColormap object>
BuGn_r = <matplotlib.colors.LinearSegmentedColormap object>
BuPu = <matplotlib.colors.LinearSegmentedColormap object>
BuPu_r = <matplotlib.colors.LinearSegmentedColormap object>
CMRmap = <matplotlib.colors.LinearSegmentedColormap object>
CMRmap_r = <matplotlib.colors.LinearSegmentedColormap object>
Dark2 = <matplotlib.colors.ListedColormap object>
Dark2_r = <matplotlib.colors.ListedColormap object>
GnBu = <matplotlib.colors.LinearSegmentedColormap object>
GnBu_r = <matplotlib.colors.LinearSegmentedColormap object>
Greens = <matplotlib.colors.LinearSegmentedColormap object>
Greens_r = <matplotlib.colors.LinearSegmentedColormap object>
Greys = <matplotlib.colors.LinearSegmentedColormap object>
Greys_r = <matplotlib.colors.LinearSegmentedColormap object>
LUTSIZE = 256
OrRd = <matplotlib.colors.LinearSegmentedColormap object>
OrRd_r = <matplotlib.colors.LinearSegmentedColormap object>
Oranges = <matplotlib.colors.LinearSegmentedColormap object>
Oranges_r = <matplotlib.colors.LinearSegmentedColormap object>
PRGn = <matplotlib.colors.LinearSegmentedColormap object>
PRGn_r = <matplotlib.colors.LinearSegmentedColormap object>
Paired = <matplotlib.colors.ListedColormap object>
Paired_r = <matplotlib.colors.ListedColormap object>
Pastel1 = <matplotlib.colors.ListedColormap object>
Pastel1_r = <matplotlib.colors.ListedColormap object>
Pastel2 = <matplotlib.colors.ListedColormap object>
Pastel2_r = <matplotlib.colors.ListedColormap object>
PiYG = <matplotlib.colors.LinearSegmentedColormap object>
PiYG_r = <matplotlib.colors.LinearSegmentedColormap object>
PuBu = <matplotlib.colors.LinearSegmentedColormap object>
PuBuGn = <matplotlib.colors.LinearSegmentedColormap object>
PuBuGn_r = <matplotlib.colors.LinearSegmentedColormap object>
PuBu_r = <matplotlib.colors.LinearSegmentedColormap object>
PuOr = <matplotlib.colors.LinearSegmentedColormap object>
PuOr_r = <matplotlib.colors.LinearSegmentedColormap object>
PuRd = <matplotlib.colors.LinearSegmentedColormap object>
PuRd_r = <matplotlib.colors.LinearSegmentedColormap object>
Purples = <matplotlib.colors.LinearSegmentedColormap object>
Purples_r = <matplotlib.colors.LinearSegmentedColormap object>
RdBu = <matplotlib.colors.LinearSegmentedColormap object>
RdBu_r = <matplotlib.colors.LinearSegmentedColormap object>
RdGy = <matplotlib.colors.LinearSegmentedColormap object>
RdGy_r = <matplotlib.colors.LinearSegmentedColormap object>
RdPu = <matplotlib.colors.LinearSegmentedColormap object>
RdPu_r = <matplotlib.colors.LinearSegmentedColormap object>
RdYlBu = <matplotlib.colors.LinearSegmentedColormap object>
RdYlBu_r = <matplotlib.colors.LinearSegmentedColormap object>
RdYlGn = <matplotlib.colors.LinearSegmentedColormap object>
RdYlGn_r = <matplotlib.colors.LinearSegmentedColormap object>
Reds = <matplotlib.colors.LinearSegmentedColormap object>
Reds_r = <matplotlib.colors.LinearSegmentedColormap object>
Set1 = <matplotlib.colors.ListedColormap object>
Set1_r = <matplotlib.colors.ListedColormap object>
Set2 = <matplotlib.colors.ListedColormap object>
Set2_r = <matplotlib.colors.ListedColormap object>
Set3 = <matplotlib.colors.ListedColormap object>
Set3_r = <matplotlib.colors.ListedColormap object>
Spectral = <matplotlib.colors.LinearSegmentedColormap object>
Spectral_r = <matplotlib.colors.LinearSegmentedColormap object>
Vega10 = <matplotlib.colors.ListedColormap object>
Vega10_r = <matplotlib.colors.ListedColormap object>
Vega20 = <matplotlib.colors.ListedColormap object>
Vega20_r = <matplotlib.colors.ListedColormap object>
Vega20b = <matplotlib.colors.ListedColormap object>
Vega20b_r = <matplotlib.colors.ListedColormap object>
Vega20c = <matplotlib.colors.ListedColormap object>
Vega20c_r = <matplotlib.colors.ListedColormap object>
Wistia = <matplotlib.colors.LinearSegmentedColormap object>
Wistia_r = <matplotlib.colors.LinearSegmentedColormap object>
YlGn = <matplotlib.colors.LinearSegmentedColormap object>
YlGnBu = <matplotlib.colors.LinearSegmentedColormap object>
YlGnBu_r = <matplotlib.colors.LinearSegmentedColormap object>
YlGn_r = <matplotlib.colors.LinearSegmentedColormap object>
YlOrBr = <matplotlib.colors.LinearSegmentedColormap object>
YlOrBr_r = <matplotlib.colors.LinearSegmentedColormap object>
YlOrRd = <matplotlib.colors.LinearSegmentedColormap object>
YlOrRd_r = <matplotlib.colors.LinearSegmentedColormap object>
absolute_import = _Feature((2, 5, 0, ''alpha'', 1), (3, 0, 0, ''alpha'', 0...
afmhot = <matplotlib.colors.LinearSegmentedColormap object>
afmhot_r = <matplotlib.colors.LinearSegmentedColormap object>
autumn = <matplotlib.colors.LinearSegmentedColormap object>
autumn_r = <matplotlib.colors.LinearSegmentedColormap object>
binary = <matplotlib.colors.LinearSegmentedColormap object>
binary_r = <matplotlib.colors.LinearSegmentedColormap object>
bone = <matplotlib.colors.LinearSegmentedColormap object>
bone_r = <matplotlib.colors.LinearSegmentedColormap object>
brg = <matplotlib.colors.LinearSegmentedColormap object>
brg_r = <matplotlib.colors.LinearSegmentedColormap object>
bwr = <matplotlib.colors.LinearSegmentedColormap object>
bwr_r = <matplotlib.colors.LinearSegmentedColormap object>
cmap_d = {u''Spectral'': <matplotlib.colors.LinearSegmented...tlib.color...
cmapname = u''afmhot''
cmaps_listed = {''inferno'': <matplotlib.colors.ListedColormap object>, ...
cool = <matplotlib.colors.LinearSegmentedColormap object>
cool_r = <matplotlib.colors.LinearSegmentedColormap object>
coolwarm = <matplotlib.colors.LinearSegmentedColormap object>
coolwarm_r = <matplotlib.colors.LinearSegmentedColormap object>
copper = <matplotlib.colors.LinearSegmentedColormap object>
copper_r = <matplotlib.colors.LinearSegmentedColormap object>
cubehelix = <matplotlib.colors.LinearSegmentedColormap object>
cubehelix_r = <matplotlib.colors.LinearSegmentedColormap object>
datad = {u''Spectral'': ((0.6196078431372549, 0.0039215686...830>, u''red...
division = _Feature((2, 2, 0, ''alpha'', 2), (3, 0, 0, ''alpha'', 0), 8192...
flag = <matplotlib.colors.LinearSegmentedColormap object>
flag_r = <matplotlib.colors.LinearSegmentedColormap object>
gist_earth = <matplotlib.colors.LinearSegmentedColormap object>
gist_earth_r = <matplotlib.colors.LinearSegmentedColormap object>
gist_gray = <matplotlib.colors.LinearSegmentedColormap object>
gist_gray_r = <matplotlib.colors.LinearSegmentedColormap object>
gist_heat = <matplotlib.colors.LinearSegmentedColormap object>
gist_heat_r = <matplotlib.colors.LinearSegmentedColormap object>
gist_ncar = <matplotlib.colors.LinearSegmentedColormap object>
gist_ncar_r = <matplotlib.colors.LinearSegmentedColormap object>
gist_rainbow = <matplotlib.colors.LinearSegmentedColormap object>
gist_rainbow_r = <matplotlib.colors.LinearSegmentedColormap object>
gist_stern = <matplotlib.colors.LinearSegmentedColormap object>
gist_stern_r = <matplotlib.colors.LinearSegmentedColormap object>
gist_yarg = <matplotlib.colors.LinearSegmentedColormap object>
gist_yarg_r = <matplotlib.colors.LinearSegmentedColormap object>
gnuplot = <matplotlib.colors.LinearSegmentedColormap object>
gnuplot2 = <matplotlib.colors.LinearSegmentedColormap object>
gnuplot2_r = <matplotlib.colors.LinearSegmentedColormap object>
gnuplot_r = <matplotlib.colors.LinearSegmentedColormap object>
gray = <matplotlib.colors.LinearSegmentedColormap object>
gray_r = <matplotlib.colors.LinearSegmentedColormap object>
hot = <matplotlib.colors.LinearSegmentedColormap object>
hot_r = <matplotlib.colors.LinearSegmentedColormap object>
hsv = <matplotlib.colors.LinearSegmentedColormap object>
hsv_r = <matplotlib.colors.LinearSegmentedColormap object>
inferno = <matplotlib.colors.ListedColormap object>
inferno_r = <matplotlib.colors.ListedColormap object>
jet = <matplotlib.colors.LinearSegmentedColormap object>
jet_r = <matplotlib.colors.LinearSegmentedColormap object>
magma = <matplotlib.colors.ListedColormap object>
magma_r = <matplotlib.colors.ListedColormap object>
nipy_spectral = <matplotlib.colors.LinearSegmentedColormap object>
nipy_spectral_r = <matplotlib.colors.LinearSegmentedColormap object>
ocean = <matplotlib.colors.LinearSegmentedColormap object>
ocean_r = <matplotlib.colors.LinearSegmentedColormap object>
pink = <matplotlib.colors.LinearSegmentedColormap object>
pink_r = <matplotlib.colors.LinearSegmentedColormap object>
plasma = <matplotlib.colors.ListedColormap object>
plasma_r = <matplotlib.colors.ListedColormap object>
print_function = _Feature((2, 6, 0, ''alpha'', 2), (3, 0, 0, ''alpha'', 0)...
prism = <matplotlib.colors.LinearSegmentedColormap object>
prism_r = <matplotlib.colors.LinearSegmentedColormap object>
rainbow = <matplotlib.colors.LinearSegmentedColormap object>
rainbow_r = <matplotlib.colors.LinearSegmentedColormap object>
seismic = <matplotlib.colors.LinearSegmentedColormap object>
seismic_r = <matplotlib.colors.LinearSegmentedColormap object>
spectral = <matplotlib.colors.LinearSegmentedColormap object>
spectral_r = <matplotlib.colors.LinearSegmentedColormap object>
spring = <matplotlib.colors.LinearSegmentedColormap object>
spring_r = <matplotlib.colors.LinearSegmentedColormap object>
summer = <matplotlib.colors.LinearSegmentedColormap object>
summer_r = <matplotlib.colors.LinearSegmentedColormap object>
tab10 = <matplotlib.colors.ListedColormap object>
tab10_r = <matplotlib.colors.ListedColormap object>
tab20 = <matplotlib.colors.ListedColormap object>
tab20_r = <matplotlib.colors.ListedColormap object>
tab20b = <matplotlib.colors.ListedColormap object>
tab20b_r = <matplotlib.colors.ListedColormap object>
tab20c = <matplotlib.colors.ListedColormap object>
tab20c_r = <matplotlib.colors.ListedColormap object>
terrain = <matplotlib.colors.LinearSegmentedColormap object>
terrain_r = <matplotlib.colors.LinearSegmentedColormap object>
unicode_literals = _Feature((2, 6, 0, ''alpha'', 2), (3, 0, 0, ''alpha'', ...
viridis = <matplotlib.colors.ListedColormap object>
viridis_r = <matplotlib.colors.ListedColormap object>
winter = <matplotlib.colors.LinearSegmentedColormap object>
winter_r = <matplotlib.colors.LinearSegmentedColormap object>
Jupyterlab / Notebook 中的交互式 matplotlib 图(使用 ipympl 的 %matplotlib 小部件)仅工作一次然后消失
如何解决Jupyterlab / Notebook 中的交互式 matplotlib 图(使用 ipympl 的 %matplotlib 小部件)仅工作一次然后消失?
我再次尝试在 Jupyter Notebooks 中为我的学生使用交互式 matplotlib 图。我的计划是使用 JupyterLab,因为普通的 Notebook 界面在学生中不太受欢迎。这是一个两芯 MWE 笔记本:
import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
下一个单元格:
plt.figure(1)
x = np.arange(100)
y = x*x
plt.plot(x,y)
plt.show()
当我运行这些单元格时,我确实得到了一个交互式 Matplotlib 图。但是当我第二次运行第二个单元格时,绘图窗口消失而没有警告或错误,只有在我在第二个单元格之前重新运行第一个单元格时才会返回。经典笔记本界面显示相同的行为,删除 plt.show()
或 plt.figure()
也没有区别。
我在 venv
环境中的 Windows 10 计算机上本地运行 Jupyter 服务器,安装了以下版本:
Python : 3.8.2
ipympl : 0.7.0
jupyter core : 4.7.1
jupyter-notebook : 6.3.0
qtconsole : not installed
ipython : 7.23.1
ipykernel : 5.5.4
jupyter client : 6.1.12
jupyter lab : 3.0.14
nbconvert : 6.0.7
ipywidgets : 7.6.3
nbformat : 5.1.3
traitlets : 5.0.5
在我的非专业人士看来,启动期间的消息似乎没问题:
[I 2021-05-12 10:10:48.065 LabApp] JupyterLab extension loaded from d:\envs\pyfda_38\lib\site-packages\jupyterlab
[I 2021-05-12 10:10:48.065 LabApp] JupyterLab application directory is D:\envs\pyfda_38\share\jupyter\lab
[I 2021-05-12 10:10:48.069 ServerApp] jupyterlab | extension was successfully loaded.
[I 2021-05-12 10:10:48.488 ServerApp] nbclassic | extension was successfully loaded.
[I 2021-05-12 10:10:48.489 ServerApp] Serving notebooks from local directory: D:\Daten\xxx
[I 2021-05-12 10:10:48.489 ServerApp] Jupyter Server 1.6.4 is running at:
[I 2021-05-12 10:10:48.489 ServerApp] http://localhost:8888/lab?token=xxxx
我得到的唯一(可能)相关警告是
[W 2021-05-12 10:10:55.256 LabApp] Could not determine jupyterlab build status without nodejs
是我做错了什么,还是 ipympl 的交互图还不够成熟,无法进行 BYOD 课程?
解决方法
它在每次通过将魔术命令移动到第二个单元格来激活 matplotlib 交互式支持时起作用:
%matplotlib widget
plt.figure(1)
x = np.arange(100)
y = x*x
plt.plot(x,y)
plt.show()
今天关于Python - “gray28”颜色转换为 matplotlib 颜色和python变颜色的介绍到此结束,谢谢您的阅读,有关25 个常用 Matplotlib 图的 Python 代码,收藏收藏!、Eclipse 中的 Matplotlib.axes 与 matplotlib.pyplot.axes、Help on module matplotlib.cm in matplotlib:、Jupyterlab / Notebook 中的交互式 matplotlib 图(使用 ipympl 的 %matplotlib 小部件)仅工作一次然后消失等更多相关知识的信息可以在本站进行查询。
本文标签: