GVKun编程网logo

Educational Codeforces Round 61 (Rated for Div. 2)F(区间DP,思维,枚举)(区间的思维导图)

15

想了解EducationalCodeforcesRound61(RatedforDiv.2)F的新动态吗?本文将为您提供详细的信息,我们还将为您解答关于区间DP,思维,枚举的相关问题,此外,我们还将为

想了解Educational Codeforces Round 61 (Rated for Div. 2)F的新动态吗?本文将为您提供详细的信息,我们还将为您解答关于区间DP,思维,枚举的相关问题,此外,我们还将为您介绍关于Educational Codeforces Round 33 (Rated for Div. 2)、Educational Codeforces Round 35 (Rated for Div. 2)、Educational Codeforces Round 35 (Rated for Div. 2)A,B,C,D、Educational Codeforces Round 36 (Rated for Div. 2) A-C的新知识。

本文目录一览:

Educational Codeforces Round 61 (Rated for Div. 2)F(区间DP,思维,枚举)(区间的思维导图)

Educational Codeforces Round 61 (Rated for Div. 2)F(区间DP,思维,枚举)(区间的思维导图)

#include<bits/stdc++.h>
typedef long long ll;
const int inf=0x3f3f3f3f;
using namespace std;
char b[507];
int dp[507][507];
int main(){
    memset(dp,0x3f,sizeof(dp));
    int n;
    scanf("%d",&n);
    scanf("%s",b+1);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(i==j)
                dp[i][j]=1;
            else
                dp[i][j]=inf;
    for(int len=1;len<=n;len++)//中间段长度
        for(int l=1,r;(r=l+len)<=n;L++)//枚举起点,枚举终点
            if(b[l]==b[r])
                if(len==1)
                    dp[l][r]=1;//初始为1
                else
                    dp[l][r]=min(min(dp[l+1][r],dp[l][r-1]),dp[l+1][r-1]+1);//更新最小值
            else
                for(int k=l;k<r;k++)
                    dp[l][r]=min(dp[l][r],dp[l][k]+dp[k+1][r]);//区间更新
    printf("%d",dp[1][n]);
}

//类似cf#538D

Educational Codeforces Round 33 (Rated for Div. 2)

Educational Codeforces Round 33 (Rated for Div. 2)

总结

以上是小编为你收集整理的Educational Codeforces Round 33 (Rated for Div. 2)全部内容。

如果觉得小编网站内容还不错,欢迎将小编网站推荐给好友。

Educational Codeforces Round 35 (Rated for Div. 2)

Educational Codeforces Round 35 (Rated for Div. 2)

总结

以上是小编为你收集整理的Educational Codeforces Round 35 (Rated for Div. 2)全部内容。

如果觉得小编网站内容还不错,欢迎将小编网站推荐给好友。

Educational Codeforces Round 35 (Rated for Div. 2)A,B,C,D

Educational Codeforces Round 35 (Rated for Div. 2)A,B,C,D

A. Nearest Minimums
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given an array of n integer numbers a0, a1, ..., an - 1. Find the distance between two closest (nearest) minimums in it. It is guaranteed that in the array a minimum occurs at least two times.

Input

The first line contains positive integer n (2 ≤ n ≤ 105) — size of the given array. The second line contains n integers a0, a1, ..., an - 1(1 ≤ ai ≤ 109) — elements of the array. It is guaranteed that in the array a minimum occurs at least two times.

Output

Print the only number — distance between two nearest minimums in the array.

Examples
input
2
3 3
output
1
input
3
5 6 5
output
2
input
9
2 1 3 5 4 1 2 3 1
output
3

 思路:水题

实现代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n,minn = 1100000002,a[200000];
    cin>>n;
    for(int i = 0;i < n;i ++){
        cin>>a[i];
        minn = min(minn , a[i]);
    }
    int flag = 0;
    int maxx = 1100000002,ans=1;
    for(int i = 0;i < n;i ++){
        if(a[i] == minn){
            if(flag)
            maxx = min(ans,maxx);
            flag = 1;
            ans = 1;
        }
        else ans++;
    }
    cout<<maxx<<endl;
}
B. Two Cakes
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

It''s New Year''s Eve soon, so Ivan decided it''s high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into a pieces, and the second one — into b pieces.

Ivan knows that there will be n people at the celebration (including himself), so Ivan has set n plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met:

  1. Each piece of each cake is put on some plate;
  2. Each plate contains at least one piece of cake;
  3. No plate contains pieces of both cakes.

To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number x such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least x pieces of cake.

Help Ivan to calculate this number x!

Input

The first line contains three integers na and b (1 ≤ a, b ≤ 100, 2 ≤ n ≤ a + b) — the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively.

Output

Print the maximum possible number x such that Ivan can distribute the cake in such a way that each plate will contain at least x pieces of cake.

Examples
input
5 2 3
output
1
input
4 7 10
output
3
Note

In the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it.

In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3.

 

 思路:

水题

实现代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n,a,b;
    cin>>n>>a>>b;
    int ans = 0;
    for(int i = 1;i <= n-1;i++){
        ans = max(ans,min(a/i,b/(n-i)));
    }
    cout<<ans<<endl;
}
C. Three Garlands
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Mishka is decorating the Christmas tree. He has got three garlands, and all of them will be put on the tree. After that Mishka will switch these garlands on.

When a garland is switched on, it periodically changes its state — sometimes it is lit, sometimes not. Formally, if i-th garland is switched on during x-th second, then it is lit only during seconds xx + kix + 2kix + 3ki and so on.

Mishka wants to switch on the garlands in such a way that during each second after switching the garlands on there would be at least one lit garland. Formally, Mishka wants to choose three integers x1, x2 and x3 (not necessarily distinct) so that he will switch on the first garland during x1-th second, the second one — during x2-th second, and the third one — during x3-th second, respectively, and during each second starting from max(x1, x2, x3) at least one garland will be lit.

Help Mishka by telling him if it is possible to do this!

Input

The first line contains three integers k1, k2 and k3 (1 ≤ ki ≤ 1500) — time intervals of the garlands.

Output

If Mishka can choose moments of time to switch on the garlands in such a way that each second after switching the garlands on at least one garland will be lit, print YES.

Otherwise, print NO.

Examples
input
2 2 3
output
YES
input
4 2 3
output
NO
Note

In the first example Mishka can choose x1 = 1, x2 = 2, x3 = 1. The first garland will be lit during seconds 1, 3, 5, 7, ..., the second — 2, 4, 6, 8, ..., which already cover all the seconds after the 2-nd one. It doesn''t even matter what x3 is chosen. Our choice will lead third to be lit during seconds 1, 4, 7, 10, ..., though.

In the second example there is no way to choose such moments of time, there always be some seconds when no garland is lit.

 

 思路:

1 = 1/2 + 1/2 ,1 = 1/2+1/4+1/4, 差不多就这意思

实现代码:

#include<bits/stdc++.h>
using namespace std;
int isPrime(int n) {
    int i;
    for (i = 2; i * i <= n; ++i) {
        if (n % i == 0) return 0;
    }
    return 1;
}
int main()
{
    int   a[5];
    double ans = 0;
   for(int i = 0;i < 3;i ++)
    cin>>a[i];
    sort(a,a+3);
    for(int i = 2;i <= 1500;i++){
        if(isPrime(i)){
            ans = 0;
           for(int j = 0;j < 3;j ++){
            if(a[j]==1){
                cout<<"YES"<<endl; return 0;
            }
            if(a[j]%i==0){
                ans += 1.0/a[j];
            }
            if(ans == 1){
              cout<<"YES"<<endl;return 0;}
           }
        }
    }
        cout<<"NO"<<endl;
}
D. Inversion Counting
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

A permutation of size n is an array of size n such that each integer from 1 to n occurs exactly once in this array. An inversion in a permutation p is a pair of indices (i, j) such that i > j and ai < aj. For example, a permutation [4, 1, 3, 2] contains 4 inversions: (2, 1), (3, 1), (4, 1), (4, 3).

You are given a permutation a of size n and m queries to it. Each query is represented by two indices l and r denoting that you have to reverse the segment [l, r] of the permutation. For example, if a = [1, 2, 3, 4] and a query l = 2, r = 4 is applied, then the resulting permutation is [1, 4, 3, 2].

After each query you have to determine whether the number of inversions is odd or even.

Input

The first line contains one integer n (1 ≤ n ≤ 1500) — the size of the permutation.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) — the elements of the permutation. These integers are pairwise distinct.

The third line contains one integer m (1 ≤ m ≤ 2·105) — the number of queries to process.

Then m lines follow, i-th line containing two integers liri (1 ≤ li ≤ ri ≤ n) denoting that i-th query is to reverse a segment [li, ri] of the permutation. All queries are performed one after another.

Output

Print m lines. i-th of them must be equal to odd if the number of inversions in the permutation after i-th query is odd, and even otherwise.

Examples
input
3
1 2 3
2
1 2
2 3
output
odd
even
input
4
1 2 4 3
4
1 1
1 4
1 4
2 3
output
odd
odd
odd
even
Note

The first example:

  1. after the first query a = [2, 1, 3], inversion: (2, 1);
  2. after the second query a = [2, 3, 1], inversions: (3, 1), (3, 2).

The second example:

  1. a = [1, 2, 4, 3], inversion: (4, 3);
  2. a = [3, 4, 2, 1], inversions: (3, 1), (4, 1), (3, 2), (4, 2), (4, 3);
  3. a = [1, 2, 4, 3], inversion: (4, 3);
  4. a = [1, 4, 2, 3], inversions: (3, 2), (4, 2).

思路:和 l,r 的值没关系,只和他们之间的距离有关系

实现代码:

#include<bits/stdc++.h>
using namespace std;
const int M = 2e5+100;
int a[M],t[M];
void merge_sort(int x, int y, int & ans){
    if(y-x>1){
        int m = x+(y-x)/2;
        int p=x, q=m, i=x;
        merge_sort(x, m, ans);
        merge_sort(m ,y, ans);
        while(p<m || q<y){
            if(q>=y || p<m && a[p]<=a[q]){
                t[i++] = a[p++];
            }
            else{
                t[i++] = a[q++];
                ans += m-p;
            }
        }
        for(int j=x; j<y; j++){
            a[j] = t[j];
        }
    }
}

int main(){
    int n,q,l,r;
    cin>>n;
    for(int i = 0;i < n; i++){
        cin>>a[i];
    }
    int ans = 0;
    merge_sort(0,n,ans);
    if(ans % 2 == 0)
        ans = 0;
    else
        ans = 1;
    cin>>q;
    while(q--){
        cin>>l>>r;
        int len = r - l + 1;
        len/=2;
        if(len % 2 == 0){
            if(ans == 0) cout<<"even"<<endl;
            else cout<<"odd"<<endl;
        }
        else{
            if(ans == 0){ ans = 1; cout<<"odd"<<endl;}
            else{ ans = 0; cout<<"even"<<endl;}
        }
    }
    return 0;
}

 

Educational Codeforces Round 36 (Rated for Div. 2) A-C

Educational Codeforces Round 36 (Rated for Div. 2) A-C

总结

以上是小编为你收集整理的Educational Codeforces Round 36 (Rated for Div. 2) A-C全部内容。

如果觉得小编网站内容还不错,欢迎将小编网站推荐给好友。

关于Educational Codeforces Round 61 (Rated for Div. 2)F区间DP,思维,枚举的问题我们已经讲解完毕,感谢您的阅读,如果还想了解更多关于Educational Codeforces Round 33 (Rated for Div. 2)、Educational Codeforces Round 35 (Rated for Div. 2)、Educational Codeforces Round 35 (Rated for Div. 2)A,B,C,D、Educational Codeforces Round 36 (Rated for Div. 2) A-C等相关内容,可以在本站寻找。

本文标签: