GVKun编程网logo

【tensorFlow】tf.reshape()报错信息 - TypeError: Expected binary or unicode string(import tensorflow as tf报错)

14

此处将为大家介绍关于【tensorFlow】tf.reshape()报错信息-TypeError:Expectedbinaryorunicodestring的详细内容,并且为您解答有关importte

此处将为大家介绍关于【tensorFlow】tf.reshape()报错信息 - TypeError: Expected binary or unicode string的详细内容,并且为您解答有关import tensorflow as tf报错的相关问题,此外,我们还将为您介绍关于'TypeError at /api/chunked_upload/ Unicode-objects must be encoding before hashing' 在 Django 项目中使用 botocore 时出错、angular6.1.0 运行时报错 ERROR in node_modules/rxjs/internal/types.d.ts (81,44): error TS1005: '';'' expected.、AttributeError: 'tuple' 对象在 tensorflow 中没有属性 'shape' :-> y_t_rank = len(y_t.shape.as_list())、Error during WebSocket handshake: Unexpected response code: 200的有用信息。

本文目录一览:

【tensorFlow】tf.reshape()报错信息 - TypeError: Expected binary or unicode string(import tensorflow as tf报错)

【tensorFlow】tf.reshape()报错信息 - TypeError: Expected binary or unicode string(import tensorflow as tf报错)

今天在使用tensoflow跑cifar10的CNN分类时候,download一个源码,但是报错

TypeError: Failed to convert object of type <class ''list''> to Tensor. Contents: [-1, Dimension(4608)]. Consider casting elements to a supported type.

跟踪发现是tf.reshape()时候报错!

1 flatten_shape = input.get_shape()[1] * input.get_shape()[2] * input.get_shape()[3]
2 return tf.reshape(input, [-1, flatten_shape], name="flatten")

这里需要改成

flatten_shape = input.get_shape().as_list()[1] * input.get_shape().as_list()[2] * input.get_shape().as_list()[3]
return tf.reshape(input, [-1, flatten_shape], name="flatten")

需要使用.as_list()将获取到的shape转换成list才行。

'TypeError at /api/chunked_upload/ Unicode-objects must be encoding before hashing' 在 Django 项目中使用 botocore 时出错

'TypeError at /api/chunked_upload/ Unicode-objects must be encoding before hashing' 在 Django 项目中使用 botocore 时出错

如何解决''TypeError at /api/chunked_upload/ Unicode-objects must be encoding before hashing'' 在 Django 项目中使用 botocore 时出错?

我遇到了这个问题的死胡同。我的代码在开发中运行良好,但是当我部署我的项目并配置 DigitalOcean Spaces & S3 存储桶时,上传媒体时出现以下错误:

类型错误在 /api/chunked_upload/ Unicode 对象必须在散列之前编码

我正在使用 django-chucked-uploads 并且它不能很好地与 Botocore 配合使用 我使用的是 Python 3.7

我的代码取自这个演示:https://github.com/juliomalegria/django-chunked-upload-demo

任何帮助都会有很大帮助

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)

angular6.1.0 运行时报错 ERROR in node_modules/rxjs/internal/types.d.ts (81,44): error TS1005: '';'' expected.

angular6.1.0 运行时报错 ERROR in node_modules/rxjs/internal/types.d.ts (81,44): error TS1005: '';'' expected.

angular6.1.0 运行时报错 ERROR in node_modules/rxjs/internal/types.d.ts (81,44): error TS1005: '';'' expected. node_modules/rxjs/internal/types.d.ts (81,74): error TS1005: '';'' expected. node_modules/rxjs/internal/t

解决方法:

在package.json文件里面 修改 "rxjs": "^6.0.0" 为 "rxjs": "6.0.0",然后在项目中运行npm update

AttributeError: 'tuple' 对象在 tensorflow 中没有属性 'shape' :-> y_t_rank = len(y_t.shape.as_list())

AttributeError: 'tuple' 对象在 tensorflow 中没有属性 'shape' :-> y_t_rank = len(y_t.shape.as_list())

如何解决AttributeError: ''tuple'' 对象在 tensorflow 中没有属性 ''shape'' :-> y_t_rank = len(y_t.shape.as_list())?

Output shape from model.summary()

Heat map Shape

这是我的火车函数,其中定义了 generator

    def train(self,batch_size,model_path,epochs):
    train_dataset = MPIIDataGen("C:/Users/srira/Desktop/hourglass_keras-master/data/mpii/mpii_annotations.json","C:/Users/srira/Desktop/hourglass_keras-master/data/mpii/images",inres=self.inres,outres=self.outres,is_train=True )
    train_gen = train_dataset.generator(batch_size,self.num_stacks,sigma=1,is_shuffle=True,rot_flag=True,scale_flag=True,flip_flag=True )

    csvlogger = CSVLogger(
        os.path.join(model_path,"csv_train_" + str(datetime.datetime.Now().strftime(''%H:%M'')) + ".csv"))
    modelfile = os.path.join(model_path,''weights_{epoch:02d}_{loss:.2f}.hdf5'')

    checkpoint = EvalCallBack(model_path,self.inres,self.outres)

    xcallbacks = [csvlogger,checkpoint]

    self.model.fit_generator(generator=train_gen,steps_per_epoch=train_dataset.get_dataset_size() // batch_size,epochs=epochs,callbacks=xcallbacks)

这是training最后一行的错误:

 self.model.fit_generator(generator=train_gen,callbacks=xcallbacks)

我在这里添加整个生成器部分:

    def generator(self,num_hgstack,with_Meta=False,is_shuffle=False,rot_flag=False,scale_flag=False,flip_flag=False):
    ''''''
    Input:  batch_size * inres  * Channel (3)
    Output: batch_size * oures  * nparts
    ''''''
    train_input = np.zeros(shape=(batch_size,self.inres[0],self.inres[1],3),dtype=np.float)
    gt_heatmap = np.zeros(shape=(batch_size,self.outres[0],self.outres[1],self.nparts),dtype=np.float)
    Meta_info = list()

    if not self.is_train:
        assert (is_shuffle == False),''shuffle must be off in val model''
        assert (rot_flag == False),''rot_flag must be off in val model''

    while True:
        if is_shuffle:
            shuffle(self.anno)

        for i,kpanno in enumerate(self.anno):

            _imageaug,_gthtmap,_Meta = self.process_image(i,kpanno,sigma,rot_flag,scale_flag,flip_flag)
            _index = i % batch_size
           
            train_input[_index,:,:] = _imageaug
            gt_heatmap[_index,:] = _gthtmap
            Meta_info.append(_Meta)

            if i % batch_size == (batch_size - 1):
                out_hmaps = []
                for m in range(num_hgstack):
                    out_hmaps.append(gt_heatmap)

                if with_Meta:
                    yield train_input,out_hmaps,Meta_info
                    Meta_info = []
                else:
                    yield train_input,out_hmaps

process.image 只包含很少的图像处理内容,例如调整大小、旋转...

 File "train.py",line 56,in <module>
xnet.train(epochs=args.epochs,model_path=args.model_path,batch_size=args.batch_size)
File "C:/Users/srira/Desktop/hourglass_keras master/src/net\hourglass.py",line 54,in train
self.model.fit_generator(generator=train_gen,File "D:\Softwares\Anaconda\lib\site-packages\keras\engine\training.py",line 1918,in fit_generator
return self.fit(
File "D:\Softwares\Anaconda\lib\site-packages\keras\engine\training.py",line 1158,in fit
tmp_logs = self.train_function(iterator)
File "D:\Softwares\Anaconda\lib\site 
packages\tensorflow\python\eager\def_function.py",line 889,in __call__
result = self._call(*args,**kwds)
File "D:\Softwares\Anaconda\lib\site packages\tensorflow\python\eager\def_function.py",line 950,in _call
return self._stateless_fn(*args,**kwds)
File "D:\Softwares\Anaconda\lib\site packages\tensorflow\python\eager\function.py",line 3023,in __call__
return graph_function._call_flat(
File "D:\Softwares\Anaconda\lib\site packages\tensorflow\python\eager\function.py",line 1960,in _call_flat
return self._build_call_outputs(self._inference_function.call(
File "D:\Softwares\Anaconda\lib\site packages\tensorflow\python\eager\function.py",line 591,in call
outputs = execute.execute(
File "D:\Softwares\Anaconda\lib\site packages\tensorflow\python\eager\execute.py",line 59,in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle,device_name,op_name,tensorflow.python.framework.errors_impl.InvalidArgumentError:  Incompatible 
shapes: [6,64,1] vs. [1,6,64]
     [[node gradient_tape/mean_squared_error/broadcastGradientArgs 
(defined at D:\Softwares\Anaconda\lib\site- 
packages\keras\engine\training.py:774) ]] 
[Op:__inference_train_function_15421]

Function call stack:
train_function

2021-07-29 21:29:02.396214: W tensorflow/core/kernels/data/generator_dataset_op.cc:107] Error occurred when finalizing GeneratorDataset iterator:

失败的前提条件:Python 解释器状态未初始化。进程可能会终止。

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)

Error during WebSocket handshake: Unexpected response code: 200

Error during WebSocket handshake: Unexpected response code: 200

Error during WebSocket handshake: Unexpected response code: 200

这是服务器配置:

@Configuration
@EnableWebMvc
@EnableWebSocket
@RequestMapping("/gpsConfig")
public class GpsWebSocketConfig extends WebMvcConfigurerAdapter implements WebSocketConfigurer {
    
    @RequestMapping("/gpsTrigger")
    public void messageTrigger(){
    }
    
    public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler(gpsWebSocketHandler(), "/gpsweb/warn").setAllowedOrigins("*").addInterceptors(gpsInterceptor());
    }

    @Bean
    public GpsWarnWebSocketHandler gpsWebSocketHandler() {
        return new GpsWarnWebSocketHandler();
    }
   

    @Bean
    public GpsHandshakeInterceptor gpsInterceptor() {
        return new GpsHandshakeInterceptor();
    }
}

var webSocket = 
            new WebSocket(''ws://localhost:8080/hx-gps-platform/gpsweb/warn'');

关于【tensorFlow】tf.reshape()报错信息 - TypeError: Expected binary or unicode stringimport tensorflow as tf报错的问题就给大家分享到这里,感谢你花时间阅读本站内容,更多关于'TypeError at /api/chunked_upload/ Unicode-objects must be encoding before hashing' 在 Django 项目中使用 botocore 时出错、angular6.1.0 运行时报错 ERROR in node_modules/rxjs/internal/types.d.ts (81,44): error TS1005: '';'' expected.、AttributeError: 'tuple' 对象在 tensorflow 中没有属性 'shape' :-> y_t_rank = len(y_t.shape.as_list())、Error during WebSocket handshake: Unexpected response code: 200等相关知识的信息别忘了在本站进行查找喔。

本文标签: