GVKun编程网logo

字节跳动Android岗经典面试真题,Android面试题及解析(字节跳动安卓面试题)

17

对于字节跳动Android岗经典面试真题,Android面试题及解析感兴趣的读者,本文将会是一篇不错的选择,我们将详细介绍字节跳动安卓面试题,并为您提供关于1307页字节跳动Android面试全套真题

对于字节跳动Android岗经典面试真题,Android面试题及解析感兴趣的读者,本文将会是一篇不错的选择,我们将详细介绍字节跳动安卓面试题,并为您提供关于1307页字节跳动Android面试全套真题解析在互联网火了 ,完整版开放下载、1307页字节跳动Android面试全套真题解析火了,快来收藏!、2017-2020历年字节跳动Android面试真题解析、2020Android面试重难点之Handler机制,含字节、京东、腾讯经典面试真题解析!的有用信息。

本文目录一览:

字节跳动Android岗经典面试真题,Android面试题及解析(字节跳动安卓面试题)

字节跳动Android岗经典面试真题,Android面试题及解析(字节跳动安卓面试题)

Android没凉,只是比以前难混了

7年前Android异军突起,成了新的万亿级市场,无数掘金人涌入,期待可以一展拳脚。

那时候大环境下的手游圈,只要你能有个可以运行的连连看就能找到工作,走上赛道被浪潮推着前进,这个行业不可谓不光明。

2020了,浪潮速度放缓,漫天飞舞着唱衰Android的讯息,“凉凉”是最多的字眼。

但放心,Android真的没凉!

Android入门相对简单,初级Android很多很多,趋近饱和,你随意打开一个招聘app就能很直观的判断出来,现在Android准入的条件越来越高了。

当一个行业的标准越来越高,基础的东西越来越稳定,这哪叫凉,叫成熟。

核心分析内容

面向Android初、中级开发者,对于要学习的Android理论知识,我认为主要包括:

Android基础 & 常用
Android进阶
与时俱进、热门技术
编程语言
计算机基础
下面,我将对上面的理论知识逐一介绍。

1. Android基础 & 常用

针对Android基础&常用知识,我认为对于初级开发者来说,按照优先级最主要的知识点主要包括:四大组件、布局使用、多线程 & 动画;
具体介绍如下:

2. Android进阶

针对Android进阶知识,按照优先级最主要的知识点主要包括:自定义view、性能优化,具体介绍如下:

3. 与时俱进、热门技术

除了基础日常使用的Android知识,我们还需时刻关注行业动态,与时俱进的学习新技术,如近些年来较为热门的Android新兴技术包括:Flutter、热修复、插件化等;
同时,了解 & 学习常用的开源库也十分重要,常用的开源库主要包括图片加载、网络请求、异步处理的开源库,具体类型如下:

4. 编程语言:Java与Java虚拟机

Android是基于Java的,所以学习Java和Java虚拟机(JVM)十分重要
对于学习Java,我们移动端开发学习Java不需要后端那么深入,我认为作为Android开发者,学习的内容包括:语言特性、基础使用、集合类&机制。具体介绍如下:

近年来新兴的Kotlin大家也可以了解一下,但我认为短时间内是不会完全取代Java

对于Java虚拟机(JVM),属于底层 & 原理性的内容,具体介绍 & 学习的内容包括:

5. 计算机基础

除了学习Android特定技术外,对于程序员来说,计算机基础素养也是十分重要,即所有从事技术行业的程序员都该具备的基础知识。
计算机基础主要包括:数据结构、算法和计算机网络,具体介绍如下:

6. 额外

当你学习完上述知识后,你应该已经能称得算是一个中级Android开发工程师了,可以尝试向高级Android开发工程师进阶。
此时,我认为有3个方向可以尝试:技术专家、架构师 & 管理层,具体介绍如下:

最后

赠送大家一套完整的Android学习资料吧。

以前一直是自己在网上东平西凑的找,找到的东西也是零零散散,很多时候都是看着看着就没了,时间浪费了,问题却还没得到解决,很让人抓狂。

后面我就自己整理了一套资料,还别说,真香!

资料有条理,有系统,还很全面,我不方便直接放出来,大家可以先看看有没有用得到的地方吧。

附上白嫖地址:《Android架构视频+BATJ面试专题PDF+学习笔记》

系列教程图片

2020Android复习资料汇总.png

flutter

NDK

设计思想开源框架

)]

[外链图片转存中…(img-klzP1RU8-1621865354651)]

[外链图片转存中…(img-3Xszmxb3-1621865354652)]

微信小程序

1307页字节跳动Android面试全套真题解析在互联网火了 ,完整版开放下载

1307页字节跳动Android面试全套真题解析在互联网火了 ,完整版开放下载

前言

下面的题目都是大家在面试字节跳动或者其它大厂面试时经常遇到的,如果大家有好的题目或者好的见解欢迎分享。
参考解析:郭霖、鸿洋、玉刚、极客时间、腾讯课堂…

内容特点:条理清晰,含图像化表示更加易懂。

内容概要:包括 Handler、Activity相关、Fragment、service、布局优化、AsyncTask相关
、Android 事件分发机制、 Binder、Android 高级必备 :AMS,WMS,PMS、Glide、 Android 组件化与插件化等面试题和技术栈!

由于文章内容比较多,篇幅不允许,部分未展示内容以截图方式展示 。如有需要获取完整的资料文档的朋友点击我的GitHub免费获取。

接下来我们针对字节跳动Android中高级面试展开的完整面试题

Handler 相关知识,面试必问!

常问的点:
Handler Looper Message 关系是什么?
Messagequeue 的数据结构是什么?为什么要用这个数据结构?
如何在子线程中创建 Handler?
Handler post 方法原理?
Android消息机制的原理及源码解析
Android Handler 消息机制
Handler

Activity 相关

启动模式以及使用场景?
onNewIntent()和onConfigurationChanged()
onSaveInstanceState()和onRestoreInstanceState()
Activity 到底是如何启动的
启动模式以及使用场景
onSaveInstanceState以及onRestoreInstanceState使用
onConfigurationChanged使用以及问题解决
Activity 启动流程解析
Activity相关

Fragment

Fragment 生命周期和 Activity 对比
Fragment 之间如何进行通信
Fragment的startActivityForResult
Fragment重叠问题
Fragment 初探
Fragment 重叠, 如何通信
Fragment生命周期
Fragment相关

Service 相关

进程保活
Service的运行线程(生命周期方法全部在主线程)
Service启动方式以及如何停止
ServiceConnection里面的回调方法运行在哪个线程?
startService 和 bingService区别
进程保活一般套路
关于进程保活你需要知道的一切
Service 相关

Android布局优化之ViewStub、include、merge

什么情况下使用 ViewStub、include、merge?
他们的原理是什么?
ViewStub、include、merge概念解析
Android布局优化之ViewStub、include、merge使用与源码分析
Android布局优化

BroadcastReceiver 相关

注册方式,优先级
广播类型,区别
广播的使用场景,原理
Android广播动态静态注册
常见使用以及流程解析
广播源码解析
 BroadcastReceiver相关

AsyncTask相关

AsyncTask是串行还是并行执行?
AsyncTask随着安卓版本的变迁
AsyncTask完全解析
串行还是并行
AsyncTask相关

Android 事件分发机制

onTouch和onTouchEvent区别,调用顺序
dispatchTouchEvent, onTouchEvent, onInterceptTouchEvent 方法顺序以及使用场景
滑动冲突,如何解决
事件分发机制
事件分发解析
dispatchTouchEvent, onTouchEvent, onInterceptTouchEvent方法的使用场景解析

Android View 绘制流程

简述 View 绘制流程
onMeasure, onlayout, ondraw方法中需要注意的点
如何进行自定义 View
view 重绘机制

  • Android LayoutInflater原理分析,带你一步步深入了解View(一)
  • Android视图状态及重绘流程分析,带你一步步深入了解View(二)
  • Android视图状态及重绘流程分析,带你一步步深入了解View(三)
  • Android自定义View的实现方法,带你一步步深入了解View(四)
    Android View 绘制流程

Android Window、Activity、DecorView以及ViewRoot

Window、Activity、DecorView以及ViewRoot之间的关系
Android Window

Android 的核心 Binder 多进程 AIDL

常见的 IPC 机制以及使用场景
为什么安卓要用 binder 进行跨进程传输
多进程带来的问题

  • AIDL 使用浅析
  • binder 原理解析
  • binder 最底层解析
  • 多进程通信方式以及带来的问题
  • 多进程通信方式对比
    Binder 相关

Android 高级必备 :AMS,WMS,PMS

AMS,WMS,PMS 创建过程

  • AMS,WMS,PMS全解析
  • AMS启动流程
  • WindowManagerService启动过程解析
  • PMS 启动流程解析

Android ANR

为什么会发生 ANR?
如何定位 ANR?
如何避免 ANR?
什么是 ANR
如何避免以及分析方法
Android 性能优化之 ANR 详解
Android ANR

Android 内存相关

注意:内存泄漏和内存溢出是 2 个概念

什么情况下会内存泄漏?
如何防止内存泄漏?

  • 内存泄漏和溢出的区别
  • OOM 概念以及安卓内存管理机制
  • 内存泄漏的可能性
  • 防止内存泄漏的方法
    Android 内存相关

Android 屏幕适配

屏幕适配相关名词解析
现在流行的屏幕适配方式

  • 屏幕适配名词以及概念解析
  • 今日头条技术适配方案
    Android 屏幕适配

Android 缓存机制

LruCache使用极其原理

  • Android缓存机制
  • LruCache使用极其原理述
    Android 缓存机制

Android 性能优化

如何进行 内存 cpu 耗电 的定位以及优化
性能优化经常使用的方法
如何避免 UI 卡顿

  • 性能优化全解析,工具使用
  • 性能优化最佳实践
  • 知乎高赞文章
     Android 性能优化

Android MVC、MVP、MVVM

好几种我该选择哪个?优劣点

任玉刚的文章:设计模式选择
Android MVC、MVP、MVVM

Android Gradle 知识

这俩篇官方文章基础的够用了
必须贴一下官方文档:配置构建
Gradle 提示与诀窍

Gradle插件 了解就好
Gradle 自定义插件方式
全面理解Gradle - 执行时序

  • Gradle系列一
  • Gradle系列二
  • Gradle系列三
    Android Gradle 知识

RxJava

使用过程,特点,原理解析
RxJava 名词以及如何使用
Rxjava 观察者模式原理解析
Rxjava订阅流程,线程切换,源码分析 系列
 RxJava相关

OKHTTP 和 Retrofit

OKHTTP完整解析
Retrofit使用流程,机制详解
从 HTTP 到 Retrofit
Retrofit是如何工作的
OKHTTP 和 Retrofit

最流行图片加载库: Glide

郭神系列 Glide 分析
Android图片加载框架最全解析(一),Glide的基本用法
Android图片加载框架最全解析(二),从源码的角度理解Glide的执行流程
Android图片加载框架最全解析(三),深入探究Glide的缓存机制
Android图片加载框架最全解析(四),玩转Glide的回调与监听
Android图片加载框架最全解析(五),Glide强大的图片变换功能
Android图片加载框架最全解析(六),探究Glide的自定义模块功能
Android图片加载框架最全解析(七),实现带进度的Glide图片加载功能
Android图片加载框架最全解析(八),带你全面了解Glide 4的用法
 Glide相关

Android 组件化与插件化

为什么要用组件化?
组件之间如何通信?
组件之间如何跳转?
Android 插件化和热修复知识梳理
为什么要用组件化

  • Android彻底组件化方案实践
  • Android彻底组件化demo发布
  • Android彻底组件化-代码和资源隔离
  • Android彻底组件化—UI跳转升级改造
  • Android彻底组件化—如何使用Arouter

插件化框架历史
深入理解Android插件化技术
Android 插件化和热修复知识梳理

Android 组件化与插件化

结语

网上高级工程师面试相关文章鱼龙混杂,要么一堆内容,要么内容质量太浅, 鉴于此我整理了上述安卓开发高级工程师面试题以及答案。希望帮助大家顺利进阶为高级工程师。

目前我就职于某大厂安卓高级工程师职位,在当下大环境下也想为安卓工程师出一份力,通过我的技术经验整理了面试经常问的题,答案部分是一篇文章或者几篇文章,都是我认真看过并且觉得不错才整理出来。

大家知道高级工程师不会像刚入门那样被问的问题一句话两句话就能表述清楚,所以我通过过滤好文章来帮助大家理解。

由于文章内容比较多,篇幅不允许,部分未展示内容以截图方式展示 。如有需要获取完整的资料文档的朋友点击我的GitHub免费获取。

1307页字节跳动Android面试全套真题解析火了,快来收藏!

1307页字节跳动Android面试全套真题解析火了,快来收藏!

前言

金九银十面试季,相信大家肯定急需一套Android面试宝典,今天小编就给大家准备了我珍藏已久的Android高阶面试宝典,一份超级详细的Android面试必备知识点,供大家学习 !

想必每一个安卓程序员都有追求大厂的决心,但是想要进入大厂,我们需要掌握哪些知识点呢?这里,我为大家梳理了一个整体的知识架构。整体包括Java、Android、算法、网络等。希望大家阅读之后,能帮助大家完善与整理自己的知识体系。祝大家面试顺利~~

文末还有给大家分享我整理的Android面试专题及答案可以拿去参考下~

注意,整篇文章是知识点的概括,不包含答案,需要大家多看源码,知识只有自己去探索与发现,才会弥足珍贵!

30岁被迫转型这个事并不是每个程序员都必须这样去做的,只有一部分对编程不感兴趣,自己编程能力不强的人会被迫做出改变。而那些真正的技术大咖,对编程很感兴趣的人来说,年龄永远都不是问题。

那么,这些在30岁被迫做出改变的程序员,是因为什么呢?

一、企业的发展所决定。

互联网行业的特点就是迭代速度非常快,技术发展非常快,所以行内企业想要获得稳定良性的发展,就必须要有自己的特色,不断地保持创新,跟紧时代的发展趋势,不然就会被社会淘汰,比如前段时间,中国“鞋王”富贵鸟的陨落。

科技时代,传统行业如果不结合互联网的发展而做出改变,那么是很容易被其他同类产品所替代的,而企业的发展策略,大多决定了部分程序员的发展状况。

二、技术革新非常快。

一个项目从需求调研和分析、到产品设计和开发、再到产品实现,顺利上线的过程当中对程序员的要求非常高。同时,IT从业者之间的竞争是非常激烈的,这种竞争就要求程序员要有更扎实的基本功、要有更好的业务理解能力、要有很强的随机应变能力。

公司项目随行业发展而不断变化,前一个项目还在用这种技术,下一个项目就可能就要用到新技术去解决问题,所以这也会逼迫着很多的程序员要不断的去学习,不断去更新自己的知识体系。而对程序员来说,由于他们所在的行业比较特殊,他们工作的内容也极具有创造性,所以这也要求他们必须时刻做好改变的准备。

新技术的诞生意味着某些语言和技术的淘汰,如果你固执的只想守着自己的一亩三分地而不愿做出改变,不去主动适应新项目的需求,那么被淘汰的就只能是你。

三、随年龄增长思维被定性。

经验丰富的程序员和一些年轻程序员相比,确实有自己的优势。但年轻也意味着你更有活力,思维更敏捷,有更多的可塑性。很多公司更愿意招聘年轻人的主要原因就在于他们能够更快的理解一些东西,同时薪资要求还更低。而年纪大的程序在经过几年的工作以后,虽然他们工作能力更强了,但他们也会存在一定的思维惯性和惰性,工作中当遇到一些工程量比较大或是偏难的编程问题以后,很多大龄程序员不会去做相关的尝试,而是选择直接丢一边,不解决。

四、工作热情逐年减少。

不论是做程序员还是做其他行业,很多人都会有一种明显的感觉,在刚进入职场参加工作的时候,是我们最积极主动去学习、去解决问题的时候。当我们在职场上工作几年以后,我们的工作热情逐渐被消磨殆尽,虽然已经解决了很多问题,获得了一定经验,但在遇到新问题时就会形成一种惰性,不愿意跳出舒适区。

这些年随着行业的发展,很多人转行IT,程序员的群体也越来越庞大,他们当中,有人非常喜欢程序,所以他们就会花更多的时间自发的去研究程序,去学习一些新技术;而对有的人来说,他们当初进入这个行业只是为了高薪,所以在这个行业工作几年等年纪大了以后,他们自然会对这个行业里所做的事情感到越来越反感,自己也想早点离开这个行业。

不论是做编程还是做其他工作,很多道理都是相通的,如果你对当前所做的这件事情非常感兴趣,那不论你年纪多大,你都会自发的去学习很多东西,你总能拼命的爬到行业的金字塔顶端;反之你会更容易会感到迷茫,最终在迷茫和压力之下被迫淘汰。

最后

由于题目很多整理答案的工作量太大,所以仅限于提供知识点,详细的很多问题和参考答案我都整理成了 PDF文件,需要的小伙伴可以**点击我的腾讯文档免费获取!**

1400993928)]

[外链图片转存中…(img-QSahh56V-1621400993930)]

2017-2020历年字节跳动Android面试真题解析

2017-2020历年字节跳动Android面试真题解析

大家好!给大家介绍一下,这是我们持续更新整理的2017-2020字节跳动历年Android面试真题解析!

早在2017年我们就建了第一个字节跳动的面试群给大家讨论面试的东西。期间累计有1825个群友分享了自己的Android面试真经,并提供了参考答案。

这其中就有很多成员已经斩获今日头条、抖音等岗位的offer。有很多成员面试虽然失败了,但也分享了很多失败的经验教训。在这里一并对他们表示感谢!正是因为大家的奉献和支持,让我们的这份面试真题解析已经累计下载1082万次!


字节跳动Android面试真题解析目录如下:

第一章 计算机基础面试题

1、网络面试题 1

2、操作系统面试题 (⭐⭐⭐) 21

3、数据库面试题 (⭐) 23

第二章 数据结构和算法面试题

数据结构与算法 25

第三章 Java面试题

1、Java基础面试题 33

2、Java并发面试题 81

3、Java虚拟机面试题 (⭐⭐⭐) 121

第四章 Android面试题

1、Android基础面试题 (⭐⭐⭐) 140

2、Android高级面试题 (⭐⭐⭐) 208

第五章 其他扩展面试题

1、Kotlin (⭐⭐) 346

2、大前端 (⭐⭐) 346

3、脚本语言 (⭐⭐) 349

第六章 非技术面试题

1、高频题集 (⭐⭐⭐) 350

2、次高频题集 (⭐⭐) 352

字节跳动Android面试真题解析目录

每个问题我们都附上1个标准参考答案,都是我们反复摸索消化(真心花了很多时间),觉得写的比较好的文章作为答案。这样就可以节省大家自己去搜索的时间,把时间用在正确的东西上。

其实我们也可以直接以简易的、群友分享的答案写出来,但是这并帮助不了同学们去深刻理解,三思之下还是采用标准答案作为参考。不明白或者想通俗了解的,可加入我们字节跳动面试交流q群一起讨论,加入我们字节跳动Android面试群给大家讨论长篇or精简的答案,希望大家理解。下面是我们每章知识点的概述:

第一章 计算机基础面试题

字节跳动面试也会考察计算机基础,主要考察我们是否系统的学习了操作系统和计算机组成原理,因为只有我们看完操作系统后才能系统的认识计算机的原理。

第一章 计算机基础面试题

第二章 数据结构和算法面试题

对于算法面试准备,无疑就是刷《剑指Offer》+ LeetCode 效果最佳。刷《剑指Offer》是为了建立全面的算法面试思维,打下坚实的基础,刷LeetCode则是为了不断强化与开阔我们自己的算法思想。这两块 CS-Notes 中已经实现地很完美了,建议大家将《剑指Offer》刷完,然后再至少刷100道LeetCode题目以上。


《剑指Offer》


LeetCode中文版

第三章 Java面试题

Java 是 Android App 开发默认的语言, Android Framework 也是默认使用 Java 语言,熟练掌握 Java 语言是 Android 开发者的必备技能。当然也是我们字节跳动青睐的考题选择方向!

第三章 Java面试题

第四章 Android面试题

Android面试分为基础面试题+高级面试题两个部分。其中高级面试题部分的性能优化、Framework、三方源码属于我们考察的重点、难点方向!

第四章 Android面试题

第五章、第六章 其他扩展面试题+非技术面试题

Google 几年前就开始走“Kotlin First”的路线,目前很多官方的文档和 Demo 都是使用 Kotlin 语言作为默认,Kotlin 的重要性不言而喻。

第五章、第六章 其他扩展面试题+非技术面试题

简历制作+春招困惑解答+经典HR面试解析

以上是我们整理总结字节跳动Android面试遇到的历年真题解析,希望对大家有帮助;同时我们经常也会遇到很多关于简历制作,职业困惑、HR经典面试问题回答等有关面试的问题。同样的我们搜集整理了全套简历制作、春招困惑、HR面试等问题解析,我们在q群中,都提供了专业的解答(群号码:936903570)。

img

如何做好面试突击,规划学习方向?

面试题集可以帮助你查漏补缺,有方向有针对性的学习,为之后进大厂做准备。但是如果你仅仅是看一遍,而不去学习和深究。那么这份面试题对你的帮助会很有限。最终还是要靠资深技术水平说话。

网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。建议先制定学习计划,根据学习计划把知识点关联起来,形成一个系统化的知识体系。

学习方向很容易规划,但是如果只通过碎片化的学习,对自己的提升是很慢的。

我们搜集整理过这几年字节跳动,以及腾讯,阿里,华为,小米等公司的面试题,把面试的要求和技术点梳理成一份大而全的“ Android架构师”面试 Xmind(实际上比预期多花了不少精力),包含知识脉络 + 分支细节。

我们在搭建这些技术框架的时候,还整理了系统的高级进阶教程,会比自己碎片化学习效果强太多;

上述所有资料!均可免费分享!点击我 领取

扫码进群!联系管理员免费获取!

img

qq群号码:936903570

2020Android面试重难点之Handler机制,含字节、京东、腾讯经典面试真题解析!

2020Android面试重难点之Handler机制,含字节、京东、腾讯经典面试真题解析!

Handler 在整个 Android 开发体系中占据着很重要的地位,对开发者来说起到的作用很明确,就是为了实现线程切换或者是执行延时任务,稍微更高级一点的用法可能是为了保证多个任务在执行时的有序性。

由于 Android 系统中的主线程有特殊地位,所以像 EventBus 和 Retrofit 这类并非 Android 独有的三方库,都是通过 Handler 来实现对 Android 系统的特殊平台支持。大部分开发者都已经对如何使用 Handler 很熟悉了,这里就再来了解下其内部具体是如何实现的。

一、动手实现 Handler

本文不会一上来就直接介绍源码,而是会先根据我们想要实现的效果来反推源码,一步步来自己动手实现一个简单的 Handler

1、Message

首先,我们需要有个载体来表示要执行的任务,就叫它 Message 吧,Message 应该有什么参数呢?

  • 需要有一个唯一标识,因为要执行的任务可能有多个,我们要分得清哪个是哪个,用个 Int 类型变量就足够表示了
  • 需要能够承载数据,需要发送的数据类型会有很多种可能,那就直接用一个 Object 类型变量来表示吧,由开发者自己在使用时再来强转类型
  • 需要有一个 long 类型变量来表示任务的执行时间戳

所以,Message 类就应该至少包含以下几个字段:

/**
 * @Author: leavesC
 * @Date: 2020/12/1 13:31
 * @Desc:
 * GitHub:https://github.com/leavesC
 */
public final class Message {
    //唯一标识
    public int what;
    //数据
    public Object obj;
    //时间戳
    public long when;
}

2、MessageQueue

因为 Message 并不是发送了就能够马上被消费掉,所以就肯定要有个可以用来存放的地方,就叫它 MessageQueue 吧,即消息队列。Message 可能需要延迟处理,那么 MessageQueue 在保存 Message 的时候就应该按照时间戳的大小来顺序存放,时间戳小的 Message 放在队列的头部,在消费 Message 的时候就直接从队列头取值即可

那么用什么数据结构来存放 Message 比较好呢?

  • 用数组?不太合适,数组虽然在遍历的时候会比较快,但需要预先就申请固定的内存空间,导致在插入数据和移除数据时可能需要移动大量数据。而 MessageQueue 可能随时会收到数量不定、时间戳大小不定的 Message,消费完 Message 后还需要将该其移出队列,所以使用数组并不合适
  • 用链表?好像可以,链表在插入数据和移除数据时只需要改变指针的引用即可,不需要移动数据,内存空间也只需要按需申请即可。虽然链表在随机访问的时候性能不高,但是对于 MessageQueue 而言无所谓,因为在消费 Message 的时候也只需要取队列头的值,并不需要随机访问

好了,既然决定用链表结构,那么 Message 就需要增加一个字段用于指向下一条消息才行

/**
 * @Author: leavesC
 * @Date: 2020/12/1 13:31
 * @Desc:
 * GitHub:https://github.com/leavesC
 */
public final class Message {
    //唯一标识
    public int what;
    //数据
    public Object obj;
    //时间戳
    public long when;
    //下一个节点
    public Message next;
}

MessageQueue 需要提供一个 enqueueMessage方法用来向链表插入 Message,由于存在多个线程同时向队列发送消息的可能,所以方法内部还需要做下线程同步才行

/**
 * @Author: leavesC
 * @Date: 2020/12/1 13:31
 * @Desc:
 * GitHub:https://github.com/leavesC
 */
public class MessageQueue {

    //链表中的第一条消息
    private Message mMessages;

    void enqueueMessage(Message msg, long when) {
        synchronized (this) {
            Message p = mMessages;
            //如果链表是空的,或者处于队头的消息的时间戳比 msg 要大,则将 msg 作为链表头部
            if (p == null || when == 0 || when < p.when) {
                msg.next = p;
                mMessages = msg;
            } else {
                Message prev;
                //从链表头向链表尾遍历,寻找链表中第一条时间戳比 msg 大的消息,将 msg 插到该消息的前面
                for (; ; ) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                }
                msg.next = p;
                prev.next = msg;
            }
        }
    }
}

此外,MessageQueue 要有一个可以获取队头消息的方法才行,就叫做next()吧。外部有可能会随时向 MessageQueue 发送 Message,next()方法内部就直接来开启一个无限循环来反复取值吧。如果当前队头的消息可以直接处理的话(即消息的时间戳小于或等于当前时间),那么就直接返回队头消息。而如果队头消息的时间戳比当前时间还要大(即队头消息是一个延时消息),那么就计算当前时间和队头消息的时间戳的差值,计算 next() 方法需要阻塞等待的时间,调用 nativePollOnce()方法来等待一段时间后再继续循环遍历

    //用来标记 next() 方法是否正处于阻塞等待的状态
    private boolean mBlocked = false;

    Message next() {
        int nextPollTimeoutMillis = 0;
        for (; ; ) {
            nativePollOnce(nextPollTimeoutMillis);
            synchronized (this) {
                //当前时间
                final long now = SystemClock.uptimeMillis();

                Message msg = mMessages;
                if (msg != null) {
                    if (now < msg.when) {
                        //如果当前时间还未到达消息的的处理时间,那么就计算还需要等待的时间
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        //可以处理队头的消息了,第二条消息成为队头
                        mMessages = msg.next;
                        msg.next = null;
                        mBlocked = false;
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
                mBlocked = true;
            }
        }
    }

    //将 next 方法的调用线程休眠指定时间
    private void nativePollOnce(long nextPollTimeoutMillis) {

    }

此时就需要考虑到一种情形:next()还处于阻塞状态的时候,外部向消息队列插入了一个可以立即处理或者是阻塞等待时间比较短的 Message。此时就需要唤醒休眠的线程,因此 enqueueMessage还需要再改动下,增加判断是否需要唤醒next()方法的逻辑

    void enqueueMessage(Message msg, long when) {
        synchronized (this) {
            //用于标记是否需要唤醒 next 方法
            boolean needWake = false;         
            Message p = mMessages;
            //如果链表是空的,或者处于队头的消息的时间戳比 msg 要大,则将 msg 作为链表头部
            if (p == null || when == 0 || when < p.when) {
                msg.next = p;
                mMessages = msg;     
                //需要唤醒
                needWake = mBlocked;
            } else {
                Message prev;
                //从链表头向链表尾遍历,寻找链表中第一条时间戳比 msg 大的消息,将 msg 插到该消息的前面
                for (; ; ) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                }
                msg.next = p;
                prev.next = msg;
            }  
            if (needWake) {
                //唤醒 next() 方法
                nativeWake();
            }
        }
    }

    //唤醒 next() 方法
    private void nativeWake() {

    }

3、Handler

既然存放消息的地方已经确定就是 MessageQueue 了,那么自然就还需要有一个类可以用来向 MessageQueue 发送消息了,就叫它 Handler 吧。Handler 可以实现哪些功能呢?

  • 希望除了可以发送 Message 类型的消息外还可以发送 Runnable 类型的消息。这个简单,Handler 内部将 Runnable 包装为 Message 即可
  • 希望可以发送延时消息,以此来执行延时任务。这个也简单,用 Message 内部的 when 字段来标识希望任务执行时的时间戳即可
  • 希望可以实现线程切换,即从子线程发送的 Message 可以在主线程被执行,反过来也一样。这个也不难,子线程可以向一个特定的 mainMessageQueue 发送消息,然后让主线程负责循环从该队列中取消息并执行即可,这样不就实现了线程切换了吗?

所以说,Message 的定义和发送是由 Handler 来完成的,但 Message 的分发则可以交由其他线程来完成

根据以上需求:Runnable 要能够包装为 Message 类型,Message 的处理逻辑要交由 Handler 来定义,所以 Message 就还需要增加两个字段才行

/**
 * @Author: leavesC
 * @Date: 2020/12/1 13:31
 * @Desc:
 * GitHub:https://github.com/leavesC
 */
public final class Message {
    //唯一标识
    public int what;
    //数据
    public Object obj;
    //时间戳
    public long when;
    //下一个节点
    public Message next;
    //用于将 Runnable 包装为 Message
    public Runnable callback;
    //指向 Message 的发送者,同时也是 Message 的最终处理者
    public Handler target;
}

Handler 至少需要包含几个方法:用于发送 Message 和 Runnable 的方法、用来处理消息的 handleMessage 方法、用于分发消息的 dispatchMessage方法

/**
 * @Author: leavesC
 * @Date: 2020/12/1 13:31
 * @Desc:
 * GitHub:https://github.com/leavesC
 */
public class Handler {

    private MessageQueue mQueue;

    public Handler(MessageQueue mQueue) {
        this.mQueue = mQueue;
    }

    public final void post(Runnable r) {
        sendMessageDelayed(getPostMessage(r), 0);
    }

    public final void postDelayed(Runnable r, long delayMillis) {
        sendMessageDelayed(getPostMessage(r), delayMillis);
    }

    public final void sendMessage(Message r) {
        sendMessageDelayed(r, 0);
    }

    public final void sendMessageDelayed(Message msg, long delayMillis) {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

    public void sendMessageAtTime(Message msg, long uptimeMillis) {
        msg.target = this;
        mQueue.enqueueMessage(msg, uptimeMillis);
    }

    private static Message getPostMessage(Runnable r) {
        Message m = new Message();
        m.callback = r;
        return m;
    }

    //由外部来重写该方法,以此来消费 Message
    public void handleMessage(Message msg) {

    }

    //用于分发消息
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            msg.callback.run();
        } else {
            handleMessage(msg);
        }
    }

}

之后,子线程就可以像这样来使用 Handler 了:将子线程持有的 Handler 对象和主线程关联的 mainMessageQueue 绑定在一起,主线程负责循环从 mainMessageQueue 取出 Message 后再来调用 Handler 的 dispatchMessage 方法,以此实现线程切换的目的

        Handler handler = new Handler(mainThreadMessageQueue) {
            @Override
            public void handleMessage(Message msg) {
                switch (msg.what) {
                    case 1: {
                        String ob = (String) msg.obj;
                        break;
                    }
                    case 2: {
                        List<String> ob = (List<String>) msg.obj;
                        break;
                    }
                }
            }
        };
        Message messageA = new Message();
        messageA.what = 1;
        messageA.obj = "https://github.com/leavesC";
        Message messageB = new Message();
        messageB.what = 2;
        messageB.obj = new ArrayList<String>();
        handler.sendMessage(messageA);
        handler.sendMessage(messageB);

4、Looper

现在就再来想想怎么让 Handler 拿到和主线程关联的 MessageQueue,以及主线程怎么从 MessageQueue 获取 Message 并回调 Handler。这之间就一定需要一个中转器,就叫它 Looper 吧。Looper 具体需要实现什么功能呢?

  • 每个 Looper 对象应该都是对应一个独有的 MessageQueue 实例和 Thread 实例,这样子线程和主线程才可以互相发送 Message 交由对方线程处理
  • Looper 内部需要开启一个无限循环,其关联的线程就负责从 MessageQueue 循环获取 Message 进行处理
  • 因为主线程较为特殊,所以和主线程关联的 Looper 对象要能够被子线程直接获取到,可以考虑将其作为静态变量存着

这样,Looper 的大体框架就出来了。通过 ThreadLocal 来为不同的线程单独维护一个 Looper 实例,每个线程通过 prepare()方法来初始化本线程独有的 Looper 实例 ,再通过 myLooper()方法来获取和当前线程关联的 Looper 对象,和主线程关联的 sMainLooper 作为静态变量存在,方便子线程获取

/**
 * @Author: leavesC
 * @Date: 2020/12/1 13:31
 * @Desc:
 * GitHub:https://github.com/leavesC
 */
final class Looper {

    final MessageQueue mQueue;

    final Thread mThread;

    private static Looper sMainLooper;

    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();

    private Looper() {
        mQueue = new MessageQueue();
        mThread = Thread.currentThread();
    }

    public static void prepare() {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper());
    }

    public static void prepareMainLooper() {
        prepare();
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

    public static Looper getMainLooper() {
        synchronized (Looper.class) {
            return sMainLooper;
        }
    }

    public static Looper myLooper() {
        return sThreadLocal.get();
    }

}

Looper 还需要有一个用于循环从 MessageQueue 获取消息并处理的方法,就叫它loop()吧。其作用也能简单,就是循环从 MessageQueue 中取出 Message,然后将 Message 再反过来分发给 Handler 即可

    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn''t called on this thread.");
        }
        final MessageQueue queue = me.mQueue;
        for (; ; ) {
            Message msg = queue.next();//可能会阻塞
            msg.target.dispatchMessage(msg);
        }
    }

这样,主线程就先通过调用prepareMainLooper()来完成 sMainLooper 的初始化,然后调用loop()开始向 mainMessageQueue 循环取值并进行处理,没有消息的话主线程就暂时休眠着。子线程拿到 sMainLooper 后就以此来初始化 Handler,这样子线程向 Handler 发送的消息就都会被存到 mainMessageQueue 中,最终在主线程被消费掉

5、做一个总结

这样一步步走下来后,读者对于 Message、MessageQueue、Handler、Looper 这四个类的定位就应该都很清晰了吧?不同线程之间就可以依靠拿到对方的 Looper 来实现消息的跨线程处理了

例如,对于以下代码,即使 Handler 是在 otherThread 中进行初始化,但 handleMessage 方法最终是会在 mainThread 被调用执行的,

        Thread mainThread = new Thread() {
            @Override
            public void run() {
                //初始化 mainLooper
                Looper.prepareMainLooper();
                //开启循环
                Looper.loop();
            }
        };

        Thread otherThread = new Thread() {
            @Override
            public void run() {
                Looper mainLooper = Looper.getMainLooper();
                Handler handler = new Handler(mainLooper.mQueue) {
                    @Override
                    public void handleMessage(Message msg) {
                        switch (msg.what) {
                            case 1: {
                                String ob = (String) msg.obj;
                                break;
                            }
                            case 2: {
                                List<String> ob = (List<String>) msg.obj;
                                break;
                            }
                        }
                    }
                };
                Message messageA = new Message();
                messageA.what = 1;
                messageA.obj = "https://github.com/leavesC";
                Message messageB = new Message();
                messageB.what = 2;
                messageB.obj = new ArrayList<String>();
                handler.sendMessage(messageA);
                handler.sendMessage(messageB);
            }
        };

再来做个简单的总结:

  • Message:用来表示要执行的任务
  • Handler:子线程持有的 Handler 如果绑定到的是主线程的 MessageQueue 的话,那么子线程发送的 Message 就可以由主线程来消费,以此来实现线程切换,执行 UI 更新操作等目的
  • MessageQueue:即消息队列,通过 Handler 发送的消息并非都是立即执行的,需要先按照 Message 的优先级高低(延时时间的长短)保存到 MessageQueue 中,之后再来依次执行
  • Looper:Looper 用于从 MessageQueue 中循环获取 Message 并将之传递给消息处理者(即消息发送者 Handler 本身)来进行消费,每条 Message 都有个 target 变量用来指向 Handler,以此把 Message 和其处理者关联起来。不同线程之间通过互相拿到对方的 Looper 对象,以此来实现跨线程发送消息

有了以上的认知基础后,下面就来看看实际的源码实现 ~ ~

二、Handler 源码

1、Handler 如何初始化

Handler 的构造函数一共有七个,除去两个已经废弃的和三个隐藏的,实际上开发者可以使用的只有两个。而不管是使用哪个构造函数,最终的目的都是为了完成 mLooper、mQueue、mCallback、mAsynchronous 这四个常量的初始化,同时也可以看出来 MessageQueue 是由 Looper 来完成初始化的,而且 Handler 对于 Looper 和 MessageQueue 都是一对一的关系,一旦初始化后就不可改变

大部分开发者使用的应该都是 Handler 的无参构造函数,而在 Android 11 中 Handler 的无参构造函数已经被标记为废弃的了。Google 官方更推荐的做法是通过显式传入 Looper 对象来完成初始化,而非隐式使用当前线程关联的 Looper

Handler 对于 Looper 和 MessageQueue 都是一对一的关系,但是 Looper 和 MessageQueue 对于 Handler 可以是一对多的关系,这个后面会讲到
    @UnsupportedAppUsage
    final Looper mLooper;
    final MessageQueue mQueue;
    @UnsupportedAppUsage
    final Callback mCallback;
    final boolean mAsynchronous;

    //省略其它构造函数

    /**
     * @hide
     */
    public Handler(@Nullable Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can''t create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

2、Looper 如何初始化

在初始化 Handler 时,如果外部调用的构造函数没有传入 Looper,那就会调用Looper.myLooper()来获取和当前线程关联的 Looper 对象,再从 Looper 中取 MessageQueue。如果获取到的 Looper 对象为 null 就会抛出异常。根据异常信息 Can''t create handler inside thread that has not called Looper.prepare() 可以看出来,在初始化 Handler 之前需要先调用 Looper.prepare()完成 Looper 的初始化

走进 Looper 类中可以看到,myLooper()方法是 Looper 类的静态方法,其只是单纯地从 sThreadLocal 变量中取值并返回而已。sThreadLocal 又是通过 prepare(boolean) 方法来进行初始化赋值的,且只能赋值一次,重复调用将抛出异常

我们知道,ThreadLocal 的特性就是可以为不同的线程分别维护单独的一个变量实例,所以,不同的线程就会分别对应着不同的 Looper 对象,是一一对应的关系

      @UnsupportedAppUsage
    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>(); 

    /**
     * Return the Looper object associated with the current thread.  Returns
     * null if the calling thread is not associated with a Looper.
     */
    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

    /** Initialize the current thread as a looper.
      * This gives you a chance to create handlers that then reference
      * this looper, before actually starting the loop. Be sure to call
      * {@link #loop()} after calling this method, and end it by calling
      * {@link #quit()}.
      */
    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
             //只允许赋值一次
            //如果重复赋值则抛出异常
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

此外,Looper 类的构造函数也是私有的,会初始化两个常量值:mQueue 和 mThread,这说明了 Looper 对于 MessageQueue 和 Thread 都是一一对应的关系,关联之后不能改变

    @UnsupportedAppUsage
    final MessageQueue mQueue;

    final Thread mThread;    

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

在日常开发中,我们在通过 Handler 来执行 UI 刷新操作时,经常使用的是 Handler 的无参构造函数,那么此时肯定就是使用了和主线程关联的 Looper 对象,对应 Looper 类中的静态变量 sMainLooper

    @UnsupportedAppUsage
    private static Looper sMainLooper;  // guarded by Looper.class

    //被标记为废弃的原因是因为 sMainLooper 会交由 Android 系统自动来完成初始化,外部不应该主动来初始化
    @Deprecated
    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

    /**
     * Returns the application''s main looper, which lives in the main thread of the application.
     */
    public static Looper getMainLooper() {
        synchronized (Looper.class) {
            return sMainLooper;
        }
    }

prepareMainLooper()就用于为主线程初始化 Looper 对象,该方法又是由 ActivityThread 类的 main() 方法来调用的。该 main() 方法即 Java 程序的运行起始点,所以当应用启动时系统就自动为我们在主线程做好了 mainLooper 的初始化,而且已经调用了Looper.loop()方法开启了消息的循环处理,应用在使用过程中的各种交互逻辑(例如:屏幕的触摸事件、列表的滑动等)就都是在这个循环里完成分发的

正是因为 Android 系统已经自动完成了主线程 Looper 的初始化,所以我们在主线程中才可以直接使用 Handler 的无参构造函数来完成 UI 相关事件的处理

public final class ActivityThread extends ClientTransactionHandler {

    public static void main(String[] args) {
        ···
        Looper.prepareMainLooper();
        ···
        Looper.loop();
        throw new RuntimeException("Main thread loop unexpectedly exited");
    }
}

3、Handler 发送消息

Handler 用于发送消息的方法非常多,有十几个,其中大部分最终调用到的都是 sendMessageAtTime() 方法。uptimeMillis 即 Message 具体要执行的时间戳,如果该时间戳比当前时间大,那么就意味着要执行的是延迟任务。如果为 mQueue 为 null,就会打印异常信息并直接返回,因为 Message 是需要交由 MessageQueue 来处理的

     public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

需要注意 msg.target = this 这句代码,target 指向了发送消息的主体,即 Handler 对象本身,即由 Handler 对象发给 MessageQueue 的消息最后还是要交由 Handler 对象本身来处理

    private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
            long uptimeMillis) {
        msg.target = this;
        msg.workSourceUid = ThreadLocalWorkSource.getUid();

        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        //将消息交由 MessageQueue 处理
        return queue.enqueueMessage(msg, uptimeMillis);
    }

4、MessageQueue

MessageQueue 通过 enqueueMessage 方法来接收消息

  • 因为存在多个线程同时往一个 MessageQueue 发送消息的可能,所以 enqueueMessage 内部肯定需要进行线程同步
  • 可以看出 MessageQueue 内部是以链表的结构来存储 Message 的(Message.next),根据 Message 的时间戳大小来决定其在消息队列中的位置
  • mMessages 代表的是消息队列中的第一条消息。如果 mMessages 为空(消息队列是空的),或者 mMessages 的时间戳要比新消息的时间戳大,则将新消息插入到消息队列的头部;如果 mMessages 不为空,则寻找消息列队中第一条触发时间比新消息晚的非空消息,将新消息插到该消息的前面

到此,一个按照时间戳大小进行排序的消息队列就完成了,后边要做的就是从消息队列中依次取出消息进行处理了

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }

        synchronized (this) {
            ···
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            //用于标记是否需要唤醒线程
            boolean needWake;
            //如果链表是空的,或者处于队头的消息的时间戳比 msg 要大,则将 msg 作为链表头部
            //when == 0 说明 Handler 调用的是 sendMessageAtFrontOfQueue 方法,直接将 msg 插到队列头部 
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                //如果当前线程处于休眠状态 + 队头消息是屏障消息 + msg 是异步消息
                //那么就需要唤醒线程
                needWake = mBlocked && p.target == null && msg.isAsynchronous();

                Message prev;
                //从链表头向链表尾遍历,寻找链表中第一条时间戳比 msg 大的消息,将 msg 插到该消息的前面
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        //如果在 msg 之前队列中还有异步消息那么就不需要主动唤醒
                        //因为已经设定唤醒时间了
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

知道了 Message 是如何保存的了,再来看下 MessageQueue 是如何取出 Message 并回调给 Handler 的。在 MessageQueue 中读取消息的操作对应的是next() 方法。next() 方法内部开启了一个无限循环,如果消息队列中没有消息或者是队头消息还没到可以处理的时间,该方法就会导致 Loop 线程休眠挂起,直到条件满足后再重新遍历消息

    @UnsupportedAppUsage
    Message next() {
        ···
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            //将 Loop 线程休眠挂起
            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        //队头消息还未到处理时间,计算需要等待的时间
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
                ···
            }
            ···
            }
            ···
        }
    }

next() 方法又是通过 Looper 类的 loop() 方法来循环调用的,loop() 方法内也是一个无限循环,唯一跳出循环的条件就是 queue.next()方法返回为 null。因为 next() 方法可能会触发阻塞操作,所以没有消息需要处理时也会导致 loop() 方法被阻塞着,而当 MessageQueue 有了新的消息,Looper 就会及时地处理这条消息并调用 msg.target.dispatchMessage(msg) 方法将消息回传给 Handler 进行处理

    /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn''t called on this thread.");
        }
        ···    
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            ···
            msg.target.dispatchMessage(msg);
            ···
        }
    }

Handler 的dispatchMessage方法就是在向外部分发 Message 了。至此,Message 的整个分发流程就结束了

    /**
     * Handle system messages here.
     */
    public void dispatchMessage(@NonNull Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

5、消息屏障

Android 系统为了保证某些高优先级的 Message(异步消息) 能够被尽快执行,采用了一种消息屏障(Barrier)机制。其大致流程是:先发送一个屏障消息到 MessageQueue 中,当 MessageQueue 遍历到该屏障消息时,就会判断当前队列中是否存在异步消息,有的话则先跳过同步消息(开发者主动发送的都属于同步消息),优先执行异步消息。这种机制就会使得在异步消息被执行完之前,同步消息都不会得到处理

Handler 的构造函数中的async参数就用于控制发送的 Message 是否属于异步消息

    public class Handler {

        final boolean mAsynchronous;

        public Handler(@NonNull Looper looper, @Nullable Callback callback, boolean async) {
            mAsynchronous = async;
        }

        private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
                long uptimeMillis) {
            msg.target = this;
            msg.workSourceUid = ThreadLocalWorkSource.getUid();
            if (mAsynchronous) {
                //设为异步消息
                msg.setAsynchronous(true);
            }
            return queue.enqueueMessage(msg, uptimeMillis);
        }

    }

MessageQueue 在取队头消息的时候,如果判断到队头消息就是屏障消息的话,那么就会向后遍历找到第一条异步消息优先进行处理

    @UnsupportedAppUsage
    Message next() {
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
            nativePollOnce(ptr, nextPollTimeoutMillis);
            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) { //target 为 null 即属于屏障消息
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    //循环遍历,找到屏障消息后面的第一条异步消息进行处理
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
            }
        }
    }

6、退出 Looper 循环

Looper 类本身做了方法限制,除了主线程外,子线程关联的 MessageQueue 都支持退出 Loop 循环,即 quitAllowed 只有主线程才能是 false

public final class Looper {

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

}

MessageQueue 支持两种方式来退出 Loop:

  • safe 为 true,只移除所有尚未执行的消息,不移除时间戳等于当前时间的消息
  • safe 为 false,移除所有消息
    void quit(boolean safe) {
        if (!mQuitAllowed) {
            //MessageQueue 设置了不允许退出循环,直接抛出异常
            throw new IllegalStateException("Main thread not allowed to quit.");
        }
        synchronized (this) {
            if (mQuitting) {
                //避免重复调用
                return;
            }
            mQuitting = true;
            if (safe) {
                //只移除所有尚未执行的消息,不移除时间戳等于当前时间的消息
                removeAllFutureMessagesLocked();
            } else {
                //移除所有消息
                removeAllMessagesLocked();
            }
            // We can assume mPtr != 0 because mQuitting was previously false.
            nativeWake(mPtr);
        }
    }

7、IdleHandler

IdleHandler 是 MessageQueue 的一个内部接口,可以用于在 Loop 线程处于空闲状态的时候执行一些优先级不高的操作

    public static interface IdleHandler {
        boolean queueIdle();
    }

MessageQueue 在获取队头消息时,如果发现当前没有需要执行的 Message 的话,那么就会去遍历 mIdleHandlers,依次执行 IdleHandler

    private final ArrayList<IdleHandler> mIdleHandlers = new ArrayList<IdleHandler>();

    @UnsupportedAppUsage
    Message next() {
        ···
        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            ···
            synchronized (this) {
                ···
                //如果队头消息 mMessages 为 null 或者 mMessages 需要延迟处理
                //那么就来执行 IdleHandler
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }
                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler
                boolean keep = false;
                try {
                    //执行 IdleHandler
                    //如果返回 false 的话说明之后不再需要执行,那就将其移除
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }
                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }
        }
    }

例如,ActivityThread 就向主线程 MessageQueue 添加了一个 GcIdler,用于在主线程空闲时尝试去执行 GC 操作

public final class ActivityThread extends ClientTransactionHandler {

    @UnsupportedAppUsage
    void scheduleGcIdler() {
        if (!mGcIdlerScheduled) {
            mGcIdlerScheduled = true;
            //添加 IdleHandler
            Looper.myQueue().addIdleHandler(mGcIdler);
        }
        mH.removeMessages(H.GC_WHEN_IDLE);
    }

    final class GcIdler implements MessageQueue.IdleHandler {
        @Override
        public final boolean queueIdle() {
            //尝试 GC
            doGcIfNeeded();
            purgePendingResources();
            return false;
        }
    }

}

8、做一个总结

再来总结下以上的所有内容

  1. 每个 Handler 都会和一个 Looper 实例关联在一起,可以在初始化 Handler 时通过构造函数主动传入实例,否则就会默认使用和当前线程关联的 Looper 对象
  2. 每个 Looper 都会和一个 MessageQueue 实例关联在一起,每个线程都需要通过调用 Looper.prepare()方法来初始化本线程独有的 Looper 实例,并通过调用Looper.loop()方法来使得本线程循环向 MessageQueue 取出消息并执行。Android 系统默认会为每个应用初始化和主线程关联的 Looper 对象,并且默认就开启了 loop 循环来处理主线程消息
  3. MessageQueue 按照链接结构来保存 Message,执行时间早(即时间戳小)的 Message 会排在链表的头部,Looper 会循环从链表中取出 Message 并回调给 Handler,取值的过程可能会包含阻塞操作
  4. Message、Handler、Looper、MessageQueue 这四者就构成了一个生产者和消费者模式。Message 相当于产品,MessageQueue 相当于传输管道,Handler 相当于生产者,Looper 相当于消费者
  5. Handler 对于 Looper、Handler 对于 MessageQueue、Looper 对于 MessageQueue、Looper 对于 Thread ,这几个之间都是一一对应的关系,在关联后无法更改,但 Looper 对于 Handler、MessageQueue 对于 Handler 可以是一对多的关系
  6. Handler 能用于更新 UI 包含了一个隐性的前提条件:Handler 与主线程 Looper 关联在了一起。在主线程中初始化的 Handler 会默认与主线程 Looper 关联在一起,所以其 handleMessage(Message msg) 方法就会由主线程来调用。在子线程初始化的 Handler 如果也想执行 UI 更新操作的话,则需要主动获取 mainLooper 来初始化 Handler
  7. 对于我们自己在子线程中创建的 Looper,当不再需要的时候我们应该主动退出循环,否则子线程将一直无法得到释放。对于主线程 Loop 我们则不应该去主动退出,否则将导致应用崩溃
  8. 我们可以通过向 MessageQueue 添加 IdleHandler 的方式,来实现在 Loop 线程处于空闲状态的时候执行一些优先级不高的任务。例如,假设我们有个需求是希望当主线程完成界面绘制等事件后再执行一些 UI 操作,那么就可以通过 IdleHandler 来实现,这可以避免拖慢用户看到首屏页面的速度

三、Handler 在系统中的应用

1、HandlerThread

HandlerThread 是 Android SDK 中和 Handler 在同个包下的一个类,从其名字就可以看出来它是一个线程,而且使用到了 Handler

其用法类似于以下代码。通过 HandlerThread 内部的 Looper 对象来初始化 Handler,同时在 Handler 中声明需要执行的耗时任务,主线程通过向 Handler 发送消息来触发 HandlerThread 去执行耗时任务

class MainActivity : AppCompatActivity() {

    private val handlerThread = HandlerThread("I am HandlerThread")

    private val handler by lazy {
        object : Handler(handlerThread.looper) {
            override fun handleMessage(msg: Message) {
                Thread.sleep(2000)
                Log.e("MainActivity", "这里是子线程,可以用来执行耗时任务:" + Thread.currentThread().name)
            }
        }
    }

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(R.layout.activity_main)
        btn_test.setOnClickListener {
            handler.sendEmptyMessage(1)
        }
        handlerThread.start()
    }

}

HandlerThread 的源码还是挺简单的,只有一百多行

HandlerThread 是 Thread 的子类,其作用就是为了用来执行耗时任务,其 run()方法会自动为自己创建一个 Looper 对象并保存到 mLooper,之后就主动开启消息循环,这样 HandlerThread 就会来循环处理 Message 了

public class HandlerThread extends Thread {

    //线程优先级
    int mPriority;
    //线程ID
    int mTid = -1;
    //当前线程持有的 Looper 对象
    Looper mLooper;

    private @Nullable Handler mHandler;

    public HandlerThread(String name) {
        super(name);
        mPriority = Process.THREAD_PRIORITY_DEFAULT;
    }

    public HandlerThread(String name, int priority) {
        super(name);
        mPriority = priority;
    }

    @Override
    public void run() {
        mTid = Process.myTid();
        //触发当前线程创建 Looper 对象
        Looper.prepare();
        synchronized (this) {
            //获取 Looper 对象
            mLooper = Looper.myLooper();
            //唤醒所有处于等待状态的线程
            notifyAll();
        }
        //设置线程优先级
        Process.setThreadPriority(mPriority);
        onLooperPrepared();
        //开启消息循环
        Looper.loop();
        mTid = -1;
    }

}

此外,HandlerThread 还包含一个getLooper()方法用于获取 Looper。当我们在外部调用handlerThread.start()启动线程后,由于其run()方法的执行时机依然是不确定的,所以 getLooper()方法就必须等到 Looper 初始化完毕后才能返回,否则就会由于wait()方法而一直阻塞等待。当run()方法初始化 Looper 完成后,就会调用notifyAll()来唤醒所有处于等待状态的线程。所以外部在使用 HandlerThread 前就记得必须先调用 start() 方法来启动 HandlerThread

    //获取与 HandlerThread 关联的 Looper 对象
    //因为 getLooper() 可能先于 run() 被执行
    //所以当 mLooper 为 null 时调用者线程就需要阻塞等待 Looper 对象创建完毕
    public Looper getLooper() {
        if (!isAlive()) {
            return null;
        }

        // If the thread has been started, wait until the looper has been created.
        synchronized (this) {
            while (isAlive() && mLooper == null) {
                try {
                    wait();
                } catch (InterruptedException e) {
                }
            }
        }
        return mLooper;
    }

HandlerThread 起到的作用就是方便了主线程和子线程之间的交互,主线程可以直接通过 Handler 来声明耗时任务并交由子线程来执行。使用 HandlerThread 也方便在多个线程间共享,主线程和其它子线程都可以向 HandlerThread 下发任务,且 HandlerThread 可以保证多个任务执行时的有序性

2、IntentService

IntentService 是系统提供的 Service 子类,用于在后台串行执行耗时任务,在处理完所有任务后会自动停止,不必来手动调用 stopSelf() 方法。而且由于IntentService 是四大组件之一,拥有较高的优先级,不易被系统杀死,因此适合用于执行一些高优先级的异步任务

Google 官方以前也推荐开发者使用 IntentService,但是在 Android 11 中已经被标记为废弃状态了,但这也不妨碍我们来了解下其实现原理

IntentService 内部依靠 HandlerThread 来实现,其 onCreate()方法会创建一个 HandlerThread,拿到 Looper 对象来初始化 ServiceHandler。ServiceHandler 会将其接受到的每个 Message 都转交由抽象方法 onHandleIntent来处理,子类就通过实现该方法来声明耗时任务

public abstract class IntentService extends Service {

    private volatile Looper mServiceLooper;
    @UnsupportedAppUsage
    private volatile ServiceHandler mServiceHandler;

    private final class ServiceHandler extends Handler {
        public ServiceHandler(Looper looper) {
            super(looper);
        }

        @Override
        public void handleMessage(Message msg) {
            onHandleIntent((Intent)msg.obj);
            stopSelf(msg.arg1);
        }
    }

    @Override
    public void onCreate() {
        super.onCreate();
        HandlerThread thread = new HandlerThread("IntentService[" + mName + "]");
        //触发 HandlerThread 创建 Looper 对象
        thread.start();
        //获取 Looper 对象,构建可以向 HandlerThread 发送 Message 的 Handler
        mServiceLooper = thread.getLooper();
        mServiceHandler = new ServiceHandler(mServiceLooper);
    }
    @WorkerThread
    protected abstract void onHandleIntent(@Nullable Intent intent);

}

每次 start IntentService 时,onStart()方法就会被调用,将 intentstartId 包装为一个 Message 对象后发送给mServiceHandler。需要特别注意的是 startId 这个参数,它用于唯一标识每次对 IntentService 发起的任务请求,每次回调 onStart() 方法时,startId 的值都是自动递增的。IntentService 不应该在处理完一个 Message 之后就立即停止 IntentService,因为此时 MessageQueue 中可能还有待处理的任务还未取出来,所以如果当调用 stopSelf(int)方法时传入的参数不等于当前最新的 startId 值的话,那么stopSelf(int) 方法就不会导致 IntentService 被停止,从而避免了将尚未处理的 Message 给遗漏了

    @Override
    public void onStart(@Nullable Intent intent, int startId) {
        Message msg = mServiceHandler.obtainMessage();
        msg.arg1 = startId;
        msg.obj = intent;
        mServiceHandler.sendMessage(msg);
    }

    @Override
    public int onStartCommand(@Nullable Intent intent, int flags, int startId) {
        onStart(intent, startId);
        return mRedelivery ? START_REDELIVER_INTENT : START_NOT_STICKY;
    }

四、Handler 在三方库中的应用

1、EventBus

EventBus 的 Github 上有这么一句介绍:EventBus is a publish/subscribe event bus for Android and Java. 这说明了 EventBus 是普遍适用于 Java 环境的,只是对 Android 系统做了特殊的平台支持而已。EventBus 的四种消息发送策略包含了ThreadMode.MAIN 用于指定在主线程进行消息回调,其内部就是通过 Handler 来实现的

EventBusBuilder 会去尝试获取 MainLooper,如果拿得到的话就可以用来初始化 HandlerPoster,从而实现主线程回调

    MainThreadSupport getMainThreadSupport() {
        if (mainThreadSupport != null) {
            return mainThreadSupport;
        } else if (AndroidLogger.isAndroidLogAvailable()) {
            Object looperOrNull = getAndroidMainLooperOrNull();
            return looperOrNull == null ? null :
                    new MainThreadSupport.AndroidHandlerMainThreadSupport((Looper) looperOrNull);
        } else {
            return null;
        }
    }

    static Object getAndroidMainLooperOrNull() {
        try {
            return Looper.getMainLooper();
        } catch (RuntimeException e) {
            // Not really a functional Android (e.g. "Stub!" maven dependencies)
            return null;
        }
    }
public class HandlerPoster extends Handler implements Poster {
    protected HandlerPoster(EventBus eventBus, Looper looper, int maxMillisInsideHandleMessage) {
        super(looper);
    }
    @Override
    public void handleMessage(Message msg) {
  
    }
}

2、Retrofit

和 EventBus 一样,Retrofit 的内部实现也不需要依赖于 Android 平台,而是可以用于任意的 Java 客户端,Retrofit 只是对 Android 平台进行了特殊实现而已

在构建 Retrofit 对象的时候,我们可以选择传递一个 Platform 对象用于标记调用方所处的平台

public static final class Builder {

    private final Platform platform;

    Builder(Platform platform) {
      this.platform = platform;
    }
}

Platform 类只具有一个唯一子类,即 Android 类。其主要逻辑就是重写了父类的 defaultCallbackExecutor()方法,通过 Handler 来实现在主线程回调网络请求结果

static final class Android extends Platform {

    @Override
    public Executor defaultCallbackExecutor() {
      return new MainThreadExecutor();
    }
    static final class MainThreadExecutor implements Executor {
      private final Handler handler = new Handler(Looper.getMainLooper());
      @Override
      public void execute(Runnable r) {
        handler.post(r);
      }
    }
  }

五、面试环节

1.Handler

  • Handler Looper Message 关系是什么?
  • Messagequeue 的数据结构是什么?为什么要用这个数据结构?
  • 如何在子线程中创建 Handler?
  • Handler post 方法原理?
  • Android消息机制的原理及源码解析
  • Android Handler 消息机制

由于篇幅有限,仅展示部分内容,所有的知识点 整理的详细内容都放在了我的【GitHub】,有需要的朋友自取。

2.Activity 相关

  • 启动模式以及使用场景?
  • onNewIntent()与onConfigurationChanged()
  • onSaveInstanceState()与onRestoreInstanceState()
  • Activity 到底是如何启动的
  • 启动模式以及使用场景
  • onSaveInstanceState及onRestoreInstanceState使用
  • onConfigurationChanged使用以及问题解决
  • Activity 启动流程解析

3.Fragment

  • Fragment 生命周期和 Activity 对比
  • Fragment 之间如何进行通信
  • Fragment的startActivityForResult
  • Fragment重叠问题
  • Fragment 初探
  • Fragment 重叠, 如何通信
  • Fragment生命周期

由于篇幅有限,仅展示部分内容,所有的知识点 整理的详细内容都放在了我的【GitHub】,有需要的朋友自取。

4.Service 相关

  • 进程保活
  • Service的运行线程(生命周期方法全部在主线程)
  • Service启动方式以及如何停止
  • ServiceConnection里面的回调方法运行在哪个线程?
  • startService 和 bingService区别
  • 进程保活一般套路
  • 关于进程保活你需要知道的一切

5.Android布局优化

  • 什么情况下使用 ViewStub、include、merge?
  • 他们的原理是什么?
  • ViewStub、include、merge概念解析
  • Android布局优化之ViewStub、include、merge使用与源码分析

6.BroadcastReceiver 相关

  • 注册方式,优先级
  • 广播类型,区别
  • 广播的使用场景,原理
  • Android广播动态静态注册
  • 常见使用以及流程解析
  • 广播源码解析

#### 7.AsyncTask相关

  • AsyncTask是串行还是并行执行?
  • AsyncTask随着安卓版本的变迁
  • AsyncTask完全解析
  • 串行还是并行

8.Android 事件分发机制

  • onTouch和onTouchEvent区别,调用顺序
  • dispatchTouchEvent,onTouchEvent,onInterceptTouchEvent 方法顺序以及使用场景
  • 滑动冲突,如何解决
  • 事件分发机制
  • 事件分发解析
  • dispatchTouchEvent,onTouchEvent,onInterceptTouchEvent方法的使用场景解析

由于篇幅有限,仅展示部分内容,所有的知识点 整理的详细内容都放在了我的【GitHub】,有需要的朋友自取。

对于Android开发的朋友来说应该是非常完整的面试资料了,为了更好地整理每个模块,我参考了很多网上的优质博文和项目,力求不漏掉每一个知识点。很多朋友靠着这些内容进行复习,拿到了BATJ等大厂的offer,这个资料也已经帮助了很多的安卓开发者,希望也能帮助到你。

今天关于字节跳动Android岗经典面试真题,Android面试题及解析字节跳动安卓面试题的介绍到此结束,谢谢您的阅读,有关1307页字节跳动Android面试全套真题解析在互联网火了 ,完整版开放下载、1307页字节跳动Android面试全套真题解析火了,快来收藏!、2017-2020历年字节跳动Android面试真题解析、2020Android面试重难点之Handler机制,含字节、京东、腾讯经典面试真题解析!等更多相关知识的信息可以在本站进行查询。

本文标签: