GVKun编程网logo

skynet 源码分析之 service_logger,skynet_error(skynet.start)

5

这篇文章主要围绕skynet源码分析之service_logger,skynet_error和skynet.start展开,旨在为您提供一份详细的参考资料。我们将全面介绍skynet源码分析之serv

这篇文章主要围绕skynet 源码分析之 service_logger,skynet_errorskynet.start展开,旨在为您提供一份详细的参考资料。我们将全面介绍skynet 源码分析之 service_logger,skynet_error的优缺点,解答skynet.start的相关问题,同时也会为您带来.net core 轻量级容器 ServiceProvider 源码分析、install skynet, report error: can not find readline.h、logger.debug,logger.info,logger.warn,logger.error,logger.fatal的区别、lua coroutine & skynet的实用方法。

本文目录一览:

skynet 源码分析之 service_logger,skynet_error(skynet.start)

skynet 源码分析之 service_logger,skynet_error(skynet.start)

service_srv 目录是依附 skynet 核心模块的 c 服务模板,如用于日志输出的 logger 服务,用于运行 lua 脚本的 snlua 服务等,编译成 so 库供 skynet 框架使用。logger 服务 (service_logger.c) 功能简单,通过了解其工作方式来熟悉 skynet 的工作流程。在 skynet 启动时,会启动一个 "logger" 服务,默认是 logger 类型服务,当然也可以配置成 snlua 类型。

//skynet_start.c
struct skynet_context *ctx = skynet_context_new(config->logservice, config->logger) 

//skynet_main.c
config.logger = optstring("logger", NULL);
config.logservice = optstring("logservice", "logger");

启动一个新 logger 服务,会调用到 logger_create 这个 api,申请一个 struct logger 结构,最后赋值给 ctx->instance。当服务退出后,会调用到 logger_release 进行清理回收。

struct logger {
        FILE * handle; //文件句柄
        char * filename;
        int close; //0代表文件句柄是标准输出,1代表输出到文件
};

struct logger *
logger_create(void) {
        struct logger * inst = skynet_malloc(sizeof(*inst));
        inst->handle = NULL;
        inst->close = 0;
        inst->filename = NULL;

        return inst;
}

之后会调用 logger_init 这个 api,参数 param 是配置里 config->logger,若指定文件路径,则打开该文件,inst->handle = fopen (parm,"w");否则,设置文件句柄为标准输出 inst->handle = stdout。最后,设置 ctx 的消息回调函数为 logger_cb (skynet_callback),并给 ctx 注册一个名称 skynet_command (ctx, "REG", ".logger")。稍后再看 logger_cb 这个消息回调函数。

int logger_init(struct logger * inst, struct skynet_context *ctx, const char * parm) {
        if (parm) {
                inst->handle = fopen(parm,"w");
                if (inst->handle == NULL) {
                        return 1;
                }
                inst->filename = skynet_malloc(strlen(parm)+1);
                strcpy(inst->filename, parm);
                inst->close = 1;
        } else {
                inst->handle = stdout;
        }
        if (inst->handle) {
                skynet_callback(ctx, inst, logger_cb);
                skynet_command(ctx, "REG", ".logger");
                return 0;
        }
        return 1;
}

 skynet 输出日志通常是调用 skynet_error 这个 api (lua 层用 skynet.error 最后也是调用 skynet_error)。查找名称为 “logger” 对应的 ctx 的 handle id,然后向该 id 发送消息包 skynet_context_push,消息包的类型为 PTYPE_TEXT,没有设置 PTYPE_ALLOCSESSION 标记表示不需要接收方返回。

//skynet_error.c
void
skynet_error(struct skynet_context * context, const char *msg, ...) { static uint32_t logger = 0; if (logger == 0) { logger = skynet_handle_findname("logger"); } ... struct skynet_message smsg; if (context == NULL) { smsg.source = 0; } else { smsg.source = skynet_context_handle(context); } smsg.session = 0; smsg.data = data; smsg.sz = len | ((size_t)PTYPE_TEXT << MESSAGE_TYPE_SHIFT); skynet_context_push(logger, &smsg); }

 当工作线程分发这条消息包时,最终会调用 logger 服务的消息回调函数 logger_cb。不同服务类型的消息回调函数接口参数是一样的。

static int logger_cb(struct skynet_context * context, void *ud, int type, int session, uint32_t source, const void * msg, size_t sz) {
        struct logger * inst = ud;
        switch (type) {
        case PTYPE_SYSTEM:
                if (inst->filename) {
                        inst->handle = freopen(inst->filename, "a", inst->handle);
                }
                break;
        case PTYPE_TEXT:
                fprintf(inst->handle, "[:%08x] ",source);
                fwrite(msg, sz , 1, inst->handle);
                fprintf(inst->handle, "\n");
                fflush(inst->handle);
                break;
        }

        return 0;
}

由于 skynet_error 发送的消息包的 type 是 PTYPE_TEXT,会把消息包源地址以及消息包数据一起写到文件句柄里。在 skynet_context_new 成功启动一个服务后,会调用 skynet_error (ctx, "LAUNCH % s % s", name, param ? param : ""),于是就有了经典的 skynet 启动画面

.net core 轻量级容器 ServiceProvider 源码分析

.net core 轻量级容器 ServiceProvider 源码分析

  1. 首先看 ServiceCollection 的定义
    //定义
    public class ServiceCollection : IServiceCollection
    {
         private readonly List<ServiceDescriptor> _descriptors = new List<ServiceDescriptor>();
    
         ......
    }
    
    //接口定义
    public interface IServiceCollection : IList<ServiceDescriptor>
    {
    }

    由此可见,ServiceCollection 本身是一个 List<ServiceDescriptor> 的集合,下面我们来看一下 ServiceDescriptor 的定义

    public class ServiceDescriptor
    {
        //重要的构造函数
        public ServiceDescriptor(Type serviceType, Type implementationType, ServiceLifetime lifetime)
        {
        }
    
        //重要的属性
        /// <summary>
        /// Service 的生命周期
        /// </summary>
        /// <value></value>
        public ServiceLifetime Lifetime { get; }
    
        /// <summary>
        /// Service 的类型
        /// </summary>
        /// <value></value>
        public Type ServiceType { get; }
    
        /// <summary>
        /// Service 的实现类型
        /// </summary>
        /// <value></value>
        public Type ImplementationType { get; }
    
        /// <summary>
        /// Service 对象
        /// </summary>
        /// <value></value>
        public object ImplementationInstance { get; }
    
        /// <summary>
        /// 创建 Service 对象的工厂
        /// </summary>
        /// <value></value>
        public Func<IServiceProvider, object> ImplementationFactory { get; }
    
        ......
    }

    ServiceDescriptor 保存了 Service 类型和 Service 对象之间的关系以及 Service 的生命周期,下面来看一下 Service 的生命周期

    public enum ServiceLifetime
    {
        /// <summary>
        /// 单例
        /// </summary>
        Singleton,
        /// <summary>
        /// 范围内
        /// </summary>
        /// <remarks>
        /// 在 ASP.NET Core 应用中,每一个请求会创建一个范围
        /// </remarks>
        Scoped,
        /// <summary>
        /// 瞬时
        /// </summary>
        Transient
    }

    再来看一下 IServiceCollection 提供的一些拓展方法

    public static class ServiceCollectionServiceExtensions
    {
        //基本是3中形式,都是简单的封装
        public static IServiceCollection AddSingleton(this IServiceCollection services, ...)
        public static IServiceCollection AddScoped(this IServiceCollection services, ...)
        public static IServiceCollection AddTransient(this IServiceCollection services, ...)
    
        ......
        //最终都会调用同一个方法
        private static IServiceCollection Add(
                IServiceCollection collection,
                Type serviceType,
                Type implementationType,
                ServiceLifetime lifetime)
            {
                var descriptor = new ServiceDescriptor(serviceType, implementationType, lifetime);
                collection.Add(descriptor);
                return collection;
            }
    }

    这些方法的作用都是为了填充 ServiceCollection 中的 _descriptors 字段,IServiceCollection 有一个特别重要的方法,BuildServiceProvider,创建 ServiceProvider 

    public static class ServiceCollectionContainerBuilderExtensions
    {
        public static ServiceProvider BuildServiceProvider(this IServiceCollection services, ServiceProviderOptions options)
            {
                if (services == null)
                {
                    throw new ArgumentNullException(nameof(services));
                }
    
                if (options == null)
                {
                    throw new ArgumentNullException(nameof(options));
                }
    
                return new ServiceProvider(services, options);
            }
    }

     

  2. ServiceProvider,Service 的提供者,这是一个非常重要的类,也是容器的核心,主要用来创建 Service 对象的实例
    public sealed class ServiceProvider : IServiceProvider, IDisposable{
      
      //
    ServiceProvider 引擎 private readonly IServiceProviderEngine _engine; //构造函数 internal ServiceProvider(IEnumerable<ServiceDescriptor> serviceDescriptors, ServiceProviderOptions options) { ...... switch (options.Mode) { case ServiceProviderMode.Default:
    //.net core 默认是 true
    if (RuntimeFeature.IsSupported("IsDynamicCodeCompiled")) { _engine = new DynamicServiceProviderEngine(serviceDescriptors, callback); }
    else { // Don''t try to compile Expressions/IL if they are going to get interpreted _engine = new RuntimeServiceProviderEngine(serviceDescriptors, callback); } break; case ServiceProviderMode.Dynamic: _engine = new DynamicServiceProviderEngine(serviceDescriptors, callback); break; case ServiceProviderMode.Runtime: _engine = new RuntimeServiceProviderEngine(serviceDescriptors, callback); break; case ServiceProviderMode.ILEmit: _engine = new ILEmitServiceProviderEngine(serviceDescriptors, callback); break; case ServiceProviderMode.Expressions: _engine = new ExpressionsServiceProviderEngine(serviceDescriptors, callback); break; default: throw new NotSupportedException(nameof(options.Mode)); } ...... } //从容器中获取对象 public object GetService(Type serviceType) => _engine.GetService(serviceType); ...... }

    由此可见,ServiceProvider 创建对象的过程由 ServiceProviderEngine 接管,而 Engine 有 4 种,分别是 DynamicServiceProviderEngine,RuntimeServiceProviderEngine,ILEmitServiceProviderEngine,ExpressionsServiceProviderEngine,下面是他们之间的关系,

  3. 由上图可知,ServiceProvider 的最终的核心实现应该在 ServiceProviderEngine 这个抽象类中,下面我们来看一下这个类,我去掉了一些判断和记录日志的逻辑,让代码看起来更简洁
    internal abstract class ServiceProviderEngine : IServiceProviderEngine, IServiceScopeFactory
    {
        private readonly Func<Type, Func<ServiceProviderEngineScope, object>> _createServiceAccessor;
    
        protected ServiceProviderEngine(IEnumerable<ServiceDescriptor> serviceDescriptors, IServiceProviderEngineCallback callback)
        {
            _createServiceAccessor = CreateServiceAccessor;
            Root = new ServiceProviderEngineScope(this);
            RuntimeResolver = new CallSiteRuntimeResolver();
            CallSiteFactory = new CallSiteFactory(serviceDescriptors);
            CallSiteFactory.Add(typeof(IServiceProvider), new ServiceProviderCallSite());
            CallSiteFactory.Add(typeof(IServiceScopeFactory), new ServiceScopeFactoryCallSite());
            RealizedServices = new ConcurrentDictionary<Type, Func<ServiceProviderEngineScope, object>>();
        }
    
    //创建 Service 访问者
    private Func<ServiceProviderEngineScope, object> CreateServiceAccessor(Type serviceType) { var callSite = CallSiteFactory.GetCallSite(serviceType, new CallSiteChain()); if (callSite != null) { //调用子类实现的 获得 Service 对象的委托来创建对象 return RealizeService(callSite); } return _ => null; }
    //调用目标工厂
    internal CallSiteFactory CallSiteFactory { get; } //默认运行时解析器 protected CallSiteRuntimeResolver RuntimeResolver { get; } //根容器 public ServiceProviderEngineScope Root { get; } //获得 Service 对象的委托,由子类实现 protected abstract Func<ServiceProviderEngineScope, object> RealizeService(ServiceCallSite callSite); //获取 Service 对象 internal object GetService(Type serviceType, ServiceProviderEngineScope serviceProviderEngineScope) { var realizedService = RealizedServices.GetOrAdd(serviceType, _createServiceAccessor); return realizedService.Invoke(serviceProviderEngineScope); } //创建一个范围 public IServiceScope CreateScope() { return new ServiceProviderEngineScope(this); } }

    这个类中有几个特别重要的对象,

    1. RuntimeResolver ,Service 对象的创建就是这个对象完成的,当然不同的子类,有不同的实现,
      internal class DynamicServiceProviderEngine : CompiledServiceProviderEngine
      {
          //该类本身并没有定义 RutimeResolver 而是通过父类 CompiledServiceProviderEngine 的 ResolverBuilder 实现的
      }
      
      internal abstract class CompiledServiceProviderEngine : ServiceProviderEngine
      {
          //通过编译条件变量来确定是使用 ILEmit 还是使用 Expression
      #if IL_EMIT
          public ILEmitResolverBuilder ResolverBuilder { get; }
      #else
          public ExpressionResolverBuilder ResolverBuilder { get; }
      #endif
      
          public CompiledServiceProviderEngine(IEnumerable<ServiceDescriptor> serviceDescriptors, IServiceProviderEngineCallback callback) : base(serviceDescriptors, callback)
          {
      #if IL_EMIT
              ResolverBuilder = new ILEmitResolverBuilder(RuntimeResolver, this, Root);
      #else
              ResolverBuilder = new ExpressionResolverBuilder(RuntimeResolver, this, Root);
      #endif
          }
      
          ......
      }
      
      internal class RuntimeServiceProviderEngine : ServiceProviderEngine
      {
          //该类本身没有对应的 RuntimeResolver,直接使用父类默认的 CallSiteRuntimeResolver
      }
      
      internal class ILEmitServiceProviderEngine : ServiceProviderEngine
      {
          private readonly ILEmitResolverBuilder _expressionResolverBuilder;
          public ILEmitServiceProviderEngine(IEnumerable<ServiceDescriptor> serviceDescriptors, IServiceProviderEngineCallback callback) : base(serviceDescriptors, callback)
          {
              _expressionResolverBuilder = new ILEmitResolverBuilder(RuntimeResolver, this, Root);
          }
      
          ......
      }
      
      internal class ExpressionsServiceProviderEngine : ServiceProviderEngine
      {
          private readonly ExpressionResolverBuilder _expressionResolverBuilder;
          public ExpressionsServiceProviderEngine(IEnumerable<ServiceDescriptor> serviceDescriptors, IServiceProviderEngineCallback callback) : base(serviceDescriptors, callback)
          {
              _expressionResolverBuilder = new ExpressionResolverBuilder(RuntimeResolver, this, Root);
          }
        
          ......
      }

      所以总结来看,有 3 个对应的 Resolver 分别是:CallSiteRuntimeResolver,ILEmitResolverBuilder,ExpressionResolverBuilder 这 3 个类都继承于 CallSiteVisitor<TArgument, TResult> 的泛型类,只是对应的泛型参数不太一样

    2. CallSiteFactory,调用目标工厂,主要用来根据 ServiceDescriptor 的定义创建对应的 ServiceCallSite 对象,然后根据该对象来创建 Service 的实例,这个对象比较复杂,下面来看一些简洁的源码
      internal class CallSiteFactory
      {
          private const int DefaultSlot = 0;
          private readonly List<ServiceDescriptor> _descriptors;
          private readonly Dictionary<Type, ServiceDescriptorCacheItem> _descriptorLookup = new Dictionary<Type, ServiceDescriptorCacheItem>();
      
          public CallSiteFactory(IEnumerable<ServiceDescriptor> descriptors)
          {
              _descriptors = descriptors.ToList();
              Populate();
          }
      
          private void Populate()
          {
              /*
              在实例化 CallSiteFactory 对象时,会将 ServiceDescriptor 对象转换成字典 Dictionary<Type, ServiceDescriptorCacheItem>,
              ServiceDescriptorCacheItem 用来将同一个 ServiceType 的 ServiceDescriptor 聚合在一起,其中 ServiceDescriptorCacheItem 
              的 Last 属性,是取最后一个 ServiceDescriptor,这也就是为什么,我们 Add 同一个类型的多个实例时,获取当前类型的实例时,返回的是最后一个实例的原因
              */
              foreach (var descriptor in _descriptors)
              {
                  var cacheKey = descriptor.ServiceType;
                  _descriptorLookup.TryGetValue(cacheKey, out var cacheItem);
                  _descriptorLookup[cacheKey] = cacheItem.Add(descriptor);
              }
          }
      }
      
      private struct ServiceDescriptorCacheItem
      {
          private List<ServiceDescriptor> _items;
      
          public ServiceDescriptor Last
          {
              get
              {
                  return _items[_items.Count - 1];
              }
          }
      
          public ServiceDescriptorCacheItem Add(ServiceDescriptor descriptor)
          {
              var newCacheItem = new ServiceDescriptorCacheItem();
      
              newCacheItem._item = _item;
              newCacheItem._items = _items ?? new List<ServiceDescriptor>();
              newCacheItem._items.Add(descriptor);
      
              return newCacheItem;
          }
      }

      还有几个比较关键的方法,下面来看一下代码

      /*
      根据 ServiceType 创建 ServiceCallSite, 这个方法类似于一个职责链模式,
      先尝试根据普通类型来创建,然后尝试创建泛型类型,最后尝试创建可枚举类型 
      */
      private ServiceCallSite CreateCallSite(Type serviceType, CallSiteChain callSiteChain)
      {
          var callSite = TryCreateExact(serviceType, callSiteChain) ??
              TryCreateOpenGeneric(serviceType, callSiteChain) ??
              TryCreateEnumerable(serviceType, callSiteChain);
          return callSite;
      }
      
      //尝试获取简单类型对象
      private ServiceCallSite TryCreateExact(Type serviceType, CallSiteChain callSiteChain)
      {
          if (_descriptorLookup.TryGetValue(serviceType, out var descriptor))
          {
              /*
              descriptor.Last
              这就是为什么在容器中添加同一个类型的实例多次后,返回的总是最后一个实例
              */
              return TryCreateExact(descriptor.Last, serviceType, callSiteChain, DefaultSlot);
          }
          return null;
      }
      private ServiceCallSite TryCreateExact(ServiceDescriptor descriptor, Type serviceType, CallSiteChain callSiteChain, int slot) { if (serviceType == descriptor.ServiceType) { if (descriptor.ImplementationInstance != null) { //Add 时,直接指定实例对象时 callSite = new ConstantCallSite(descriptor.ServiceType, descriptor.ImplementationInstance); } else if (descriptor.ImplementationFactory != null) { //Add 时,指定实例工厂时 callSite = new FactoryCallSite(lifetime, descriptor.ServiceType, descriptor.ImplementationFactory); } else if (descriptor.ImplementationType != null) { //Add 时,指定类型时 callSite = CreateConstructorCallSite(lifetime, descriptor.ServiceType, descriptor.ImplementationType, callSiteChain); } return callSite; } return null; } //尝试获取泛型对象 private ServiceCallSite TryCreateOpenGeneric(ServiceDescriptor descriptor, Type serviceType, CallSiteChain callSiteChain, int slot) { if (serviceType.IsConstructedGenericType && serviceType.GetGenericTypeDefinition() == descriptor.ServiceType) { var closedType = descriptor.ImplementationType.MakeGenericType(serviceType.GenericTypeArguments); return CreateConstructorCallSite(lifetime, serviceType, closedType, callSiteChain); } return null; } //尝试获取枚举类型对象 private ServiceCallSite TryCreateEnumerable(Type serviceType, CallSiteChain callSiteChain) { if (serviceType.IsConstructedGenericType && serviceType.GetGenericTypeDefinition() == typeof(IEnumerable<>)) { //获取泛型的第一个参数 var itemType = serviceType.GenericTypeArguments.Single(); var callSites = new List<ServiceCallSite>(); if (!itemType.IsConstructedGenericType && _descriptorLookup.TryGetValue(itemType, out var descriptors)) { /* 循环该 ServiceType 所有的 ServiceDescriptor 这就是为什么在容器中添加同一个类型的实例多次后,通过 IEnumerable<T> 去获取时,返回的是多个实例 */ for (int i = 0; i < descriptors.Count; i++) { var descriptor = descriptors[i]; var callSite = TryCreateExact(descriptor, itemType, callSiteChain, slot); callSites.Add(callSite); } } else { //这里的逻辑代表的是泛型中嵌套泛型的情况,是一个递归调用 } return new IEnumerableCallSite(resultCache, itemType, callSites.ToArray()); } return null; } private ServiceCallSite CreateConstructorCallSite(ResultCache lifetime, Type serviceType, Type implementationType, CallSiteChain callSiteChain) { //获取公共的构造函数 var constructors = implementationType.GetTypeInfo() .DeclaredConstructors .Where(constructor => constructor.IsPublic) .ToArray(); ServiceCallSite[] parameterCallSites = null; if (constructors.Length == 0) { //如果没有获取到公共的构造函数会抛出异常 throw new InvalidOperationException(Resources.FormatNoConstructorMatch(implementationType)); } else if (constructors.Length == 1) { //当只有一个构造函数时,优化处理逻辑 return new ConstructorCallSite(...); } //存在多个构造函数时,按照构造函数参数的个数倒序排列 Array.Sort(constructors, (a, b) => b.GetParameters().Length.CompareTo(a.GetParameters().Length)); //最优的构造函数 ConstructorInfo bestConstructor = null; //最优构造函数的参数类型 HashSet<Type> bestConstructorParameterTypes = null; for (var i = 0; i < constructors.Length; i++) { var parameters = constructors[i].GetParameters(); var currentParameterCallSites = CreateArgumentCallSites(...); /* 默认参数最多的构造函数为最优的构造函数,但是要根据参数类型在容器中是否存在来判断, 如果参数多的构造函数,有个别参数在容器中不存在,那么该构造函数不是最优的 */ if (currentParameterCallSites != null) { if (bestConstructor == null) { bestConstructor = constructors[i]; parameterCallSites = currentParameterCallSites; } else { if (bestConstructorParameterTypes == null) { bestConstructorParameterTypes = new HashSet<Type>(bestConstructor.GetParameters().Select(p => p.ParameterType)); } //如果最优构造函数的参数类型,不是其他构造函数的参数类型的超级,抛出【有歧义】的异常 if (!bestConstructorParameterTypes.IsSupersetOf(parameters.Select(p => p.ParameterType))) { throw new InvalidOperationException(message); } } } } return new ConstructorCallSite(lifetime, serviceType, bestConstructor, parameterCallSites); }
  4. 由于 ServiceProvider 容器本身只支持构造函数注入,所以我们主要关注每个 Resolver 的 VisitConstructor 方法,

    1. CallSiteRuntimeResolver (.net framework 4.6.2 + 默认使用的方式)

      internal sealed class CallSiteRuntimeResolver : CallSiteVisitor<RuntimeResolverContext, object>
      {
          protected override object VisitConstructor(ConstructorCallSite constructorCallSite, RuntimeResolverContext context)
          {
              object[] parameterValues;
              if (constructorCallSite.ParameterCallSites.Length == 0)
              {
                  parameterValues = Array.Empty<object>();
              }
              else
              {
                  //循环获取每个参数类型的实例,如果参数类型还依赖于其它的类型,则会递归获取
                  parameterValues = new object[constructorCallSite.ParameterCallSites.Length];
                  for (var index = 0; index < parameterValues.Length; index++)
                  {
                      parameterValues[index] = VisitCallSite(constructorCallSite.ParameterCallSites[index], context);
                  }
              }
      
              return constructorCallSite.ConstructorInfo.Invoke(parameterValues);
          }
      }
    2. ILEmitResolverBuilder (.net core 默认使用方式)
      /*
      由于 IL 我懂的也不是很多,只是大概知道,需要把参数提前准备好放在堆栈上,然后调用 Newobj 就可以实例化对象,
      源码很长,有兴趣想要研究的小伙伴,可以自行学习
      */
      protected override object VisitConstructor(ConstructorCallSite constructorCallSite, ILEmitResolverBuilderContext argument)
      {
          foreach (var parameterCallSite in constructorCallSite.ParameterCallSites)
          {
              VisitCallSite(parameterCallSite, argument);
          }
          argument.Generator.Emit(OpCodes.Newobj, constructorCallSite.ConstructorInfo);
          return null;
      }
      
      private GeneratedMethod BuildTypeNoCache(ServiceCallSite callSite)
      {
          //动态创建方法
          var dynamicMethod = new DynamicMethod("ResolveService",
              attributes : MethodAttributes.Public | MethodAttributes.Static,
              callingConvention : CallingConventions.Standard,
              returnType : typeof(object),
              parameterTypes : new [] { typeof(ILEmitResolverBuilderRuntimeContext), typeof(ServiceProviderEngineScope) },
              owner : GetType(),
              skipVisibility : true);
      
          var info = ILEmitCallSiteAnalyzer.Instance.CollectGenerationInfo(callSite);
          var ilGenerator = dynamicMethod.GetILGenerator(info.Size);
          //创建方法体
          var runtimeContext = GenerateMethodBody(callSite, ilGenerator);
      
          return new GeneratedMethod()
          {
              Lambda = (Func<ServiceProviderEngineScope, object>) dynamicMethod.CreateDelegate(typeof(Func<ServiceProviderEngineScope, object>), runtimeContext),
              Context = runtimeContext,
              DynamicMethod = dynamicMethod
          };
      }
    3. ExpressionResolverBuilder 可以理解为使用表达式树将 CallSiteRuntimeResolver 的代码翻译了一遍
      internal class ExpressionResolverBuilder : CallSiteVisitor<object, Expression>
      {
          protected override Expression VisitConstructor(ConstructorCallSite callSite, object context)
          {
              var parameters = callSite.ConstructorInfo.GetParameters();
              Expression[] parameterExpressions;
              if (callSite.ParameterCallSites.Length == 0)
              {
                  parameterExpressions = Array.Empty<Expression>();
              }
              else
              {
                  //循环每一个参数,根据参数创建表达式
                  parameterExpressions = new Expression[callSite.ParameterCallSites.Length];
                  for (int i = 0; i < parameterExpressions.Length; i++)
                  {
                      parameterExpressions[i] = Convert(VisitCallSite(callSite.ParameterCallSites[i], context), parameters[i].ParameterType);
                  }
              }
              return Expression.New(callSite.ConstructorInfo, parameterExpressions);
          }
      }
  5. 总结一下
    1. ServiceCollection 只不过是用来定义 Service 的类型和定义以及生命周期
    2. Service 类型的创建是最终是通过不同的 RuntimeResolver 来实现的
    3. 源码中还包含大量对缓存的使用,如果没有缓存,这个容器的效率也就太低了,我在分析源码的时候直接略过了,原因是,我觉得缓存一定是在先实现后的基础上再加的,所以我们研究源码的过程中可以先忽略这些缓存的使用
    4. 关于 Service 的生命周期我没有细讲,单例和瞬时都非常好理解,其实最复杂的就是 Scope,有点绕的地方在于维护 IDisposable 类型的资源的释放,当然这个理解起来也不是很难,有兴趣的小伙伴可以自行研究
    5. 源码分析没有讲最基本的 IOC 概念和容器概念,想要理解这些,前提是要对容器的概念非常了解才行

install skynet, report error: can not find readline.h

install skynet, report error: can not find readline.h

slution:

sudo apt-get install lib64readline6-dev

logger.debug,logger.info,logger.warn,logger.error,logger.fatal的区别

logger.debug,logger.info,logger.warn,logger.error,logger.fatal的区别

logger.debug,logger.info,logger.warn,logger.error,logger.fatal的区别

logger.debug,logger.info,logger.warn,logger.error,logger.fatal的作用都是把错误信息写到文本日志里

不同的是它们表示的日志级别不同:
日志级别由高到底是:fatal,error,warn,info,debug,低级别的会输出高级别的信息,高级别的不会输出低级别的

信息,如等级设为Error的话,warn,info,debug的信息不会输出

修改日志输出的级别要在log4j文件中进行配置
项目正式发布后,一般会把日志级别设置为fatal或者error
 

lua coroutine & skynet

lua coroutine & skynet

总结

以上是小编为你收集整理的lua coroutine & skynet全部内容。

如果觉得小编网站内容还不错,欢迎将小编网站推荐给好友。

今天关于skynet 源码分析之 service_logger,skynet_errorskynet.start的介绍到此结束,谢谢您的阅读,有关.net core 轻量级容器 ServiceProvider 源码分析、install skynet, report error: can not find readline.h、logger.debug,logger.info,logger.warn,logger.error,logger.fatal的区别、lua coroutine & skynet等更多相关知识的信息可以在本站进行查询。

本文标签: