GVKun编程网logo

死磕 java集合之ConcurrentHashMap源码分析(三)(java集合源码解析)

25

如果您想了解死磕java集合之ConcurrentHashMap源码分析的相关知识,那么本文是一篇不可错过的文章,我们将对三进行全面详尽的解释,并且为您提供关于ConcurrentHashMap源码分

如果您想了解死磕 java集合之ConcurrentHashMap源码分析的相关知识,那么本文是一篇不可错过的文章,我们将对进行全面详尽的解释,并且为您提供关于ConcurrentHashMap源码分析、ConcurrentHashMap源码分析-Java8、ConcurrentHashMap源码分析(JDK1.7)、ConcurrentHashMap源码分析(一)的有价值的信息。

本文目录一览:

死磕 java集合之ConcurrentHashMap源码分析(三)(java集合源码解析)

死磕 java集合之ConcurrentHashMap源码分析(三)(java集合源码解析)

本章接着上两章,链接直达:

死磕 java集合之ConcurrentHashMap源码分析(一)

死磕 java集合之ConcurrentHashMap源码分析(二)


删除元素

删除元素跟添加元素一样,都是先找到元素所在的桶,然后采用分段锁的思想锁住整个桶,再进行操作。

public V remove(Object key) {
    // 调用替换节点方法
    return replaceNode(key, null, null);
}

final V replaceNode(Object key, V value, Object cv) {
    // 计算hash
    int hash = spread(key.hashCode());
    // 自旋
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0 ||
                (f = tabAt(tab, i = (n - 1) & hash)) == null)
            // 如果目标key所在的桶不存在,跳出循环返回null
            break;
        else if ((fh = f.hash) == MOVED)
            // 如果正在扩容中,协助扩容
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            // 标记是否处理过
            boolean validated = false;
            synchronized (f) {
                // 再次验证当前桶第一个元素是否被修改过
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) {
                        // fh>=0表示是链表节点
                        validated = true;
                        // 遍历链表寻找目标节点
                        for (Node<K,V> e = f, pred = null;;) {
                            K ek;
                            if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                            (ek != null && key.equals(ek)))) {
                                // 找到了目标节点
                                V ev = e.val;
                                // 检查目标节点旧value是否等于cv
                                if (cv == null || cv == ev ||
                                        (ev != null && cv.equals(ev))) {
                                    oldVal = ev;
                                    if (value != null)
                                        // 如果value不为空则替换旧值
                                        e.val = value;
                                    else if (pred != null)
                                        // 如果前置节点不为空
                                        // 删除当前节点
                                        pred.next = e.next;
                                    else
                                        // 如果前置节点为空
                                        // 说明是桶中第一个元素,删除之
                                        setTabAt(tab, i, e.next);
                                }
                                break;
                            }
                            pred = e;
                            // 遍历到链表尾部还没找到元素,跳出循环
                            if ((e = e.next) == null)
                                break;
                        }
                    }
                    else if (f instanceof TreeBin) {
                        // 如果是树节点
                        validated = true;
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> r, p;
                        // 遍历树找到了目标节点
                        if ((r = t.root) != null &&
                                (p = r.findTreeNode(hash, key, null)) != null) {
                            V pv = p.val;
                            // 检查目标节点旧value是否等于cv
                            if (cv == null || cv == pv ||
                                    (pv != null && cv.equals(pv))) {
                                oldVal = pv;
                                if (value != null)
                                    // 如果value不为空则替换旧值
                                    p.val = value;
                                else if (t.removeTreeNode(p))
                                    // 如果value为空则删除元素
                                    // 如果删除后树的元素个数较少则退化成链表
                                    // t.removeTreeNode(p)这个方法返回true表示删除节点后树的元素个数较少
                                    setTabAt(tab, i, untreeify(t.first));
                            }
                        }
                    }
                }
            }
            // 如果处理过,不管有没有找到元素都返回
            if (validated) {
                // 如果找到了元素,返回其旧值
                if (oldVal != null) {
                    // 如果要替换的值为空,元素个数减1
                    if (value == null)
                        addCount(-1L, -1);
                    return oldVal;
                }
                break;
            }
        }
    }
    // 没找到元素返回空
    return null;
}

(1)计算hash;

(2)如果所在的桶不存在,表示没有找到目标元素,返回;

(3)如果正在扩容,则协助扩容完成后再进行删除操作;

(4)如果是以链表形式存储的,则遍历整个链表查找元素,找到之后再删除;

(5)如果是以树形式存储的,则遍历树查找元素,找到之后再删除;

(6)如果是以树形式存储的,删除元素之后树较小,则退化成链表;

(7)如果确实删除了元素,则整个map元素个数减1,并返回旧值;

(8)如果没有删除元素,则返回null;

获取元素

获取元素,根据目标key所在桶的第一个元素的不同采用不同的方式获取元素,关键点在于find()方法的重写。

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    // 计算hash
    int h = spread(key.hashCode());
    // 如果元素所在的桶存在且里面有元素
    if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
        // 如果第一个元素就是要找的元素,直接返回
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        else if (eh < 0)
            // hash小于0,说明是树或者正在扩容
            // 使用find寻找元素,find的寻找方式依据Node的不同子类有不同的实现方式
            return (p = e.find(h, key)) != null ? p.val : null;

        // 遍历整个链表寻找元素
        while ((e = e.next) != null) {
            if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

(1)hash到元素所在的桶;

(2)如果桶中第一个元素就是该找的元素,直接返回;

(3)如果是树或者正在迁移元素,则调用各自Node子类的find()方法寻找元素;

(4)如果是链表,遍历整个链表寻找元素;

(5)获取元素没有加锁;

获取元素个数

元素个数的存储也是采用分段的思想,获取元素个数时需要把所有段加起来。

public int size() {
    // 调用sumCount()计算元素个数
    long n = sumCount();
    return ((n < 0L) ? 0 :
            (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                    (int)n);
}

final long sumCount() {
    // 计算CounterCell所有段及baseCount的数量之和
    CounterCell[] as = counterCells; CounterCell a;
    long sum = baseCount;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}

(1)元素的个数依据不同的线程存在在不同的段里;(见addCounter()分析)

(2)计算CounterCell所有段及baseCount的数量之和;

(3)获取元素个数没有加锁;

总结

(1)ConcurrentHashMap是HashMap的线程安全版本;

(2)ConcurrentHashMap采用(数组 + 链表 + 红黑树)的结构存储元素;

(3)ConcurrentHashMap相比于同样线程安全的HashTable,效率要高很多;

(4)ConcurrentHashMap采用的锁有 synchronized,CAS,自旋锁,分段锁,volatile等;

(5)ConcurrentHashMap中没有threshold和loadFactor这两个字段,而是采用sizeCtl来控制;

(6)sizeCtl = -1,表示正在进行初始化;

(7)sizeCtl = 0,默认值,表示后续在真正初始化的时候使用默认容量;

(8)sizeCtl > 0,在初始化之前存储的是传入的容量,在初始化或扩容后存储的是下一次的扩容门槛;

(9)sizeCtl = (resizeStamp << 16) + (1 + nThreads),表示正在进行扩容,高位存储扩容邮戳,低位存储扩容线程数加1;

(10)更新操作时如果正在进行扩容,当前线程协助扩容;

(11)更新操作会采用synchronized锁住当前桶的第一个元素,这是分段锁的思想;

(12)整个扩容过程都是通过CAS控制sizeCtl这个字段来进行的,这很关键;

(13)迁移完元素的桶会放置一个ForwardingNode节点,以标识该桶迁移完毕;

(14)元素个数的存储也是采用的分段思想,类似于LongAdder的实现;

(15)元素个数的更新会把不同的线程hash到不同的段上,减少资源争用;

(16)元素个数的更新如果还是出现多个线程同时更新一个段,则会扩容段(CounterCell);

(17)获取元素个数是把所有的段(包括baseCount和CounterCell)相加起来得到的;

(18)查询操作是不会加锁的,所以ConcurrentHashMap不是强一致性的;

(19)ConcurrentHashMap中不能存储key或value为null的元素;

彩蛋——值得学习的技术

ConcurrentHashMap中有哪些值得学习的技术呢?

我认为有以下几点:

(1)CAS + 自旋,乐观锁的思想,减少线程上下文切换的时间;

(2)分段锁的思想,减少同一把锁争用带来的低效问题;

(3)CounterCell,分段存储元素个数,减少多线程同时更新一个字段带来的低效;

(4)@sun.misc.Contended(CounterCell上的注解),避免伪共享;(p.s.伪共享我们后面也会讲的^^)

(5)多线程协同进行扩容;

(6)你又学到了哪些呢?

彩蛋——不能解决的问题

ConcurrentHashMap不能解决什么问题呢?

请看下面的例子:

private static final Map<Integer, Integer> map = new ConcurrentHashMap<>();

public void unsafeUpdate(Integer key, Integer value) {
    Integer oldValue = map.get(key);
    if (oldValue == null) {
        map.put(key, value);
    }
}

这里如果有多个线程同时调用unsafeUpdate()这个方法,ConcurrentHashMap还能保证线程安全吗?

答案是不能。因为get()之后if之前可能有其它线程已经put()了这个元素,这时候再put()就把那个线程put()的元素覆盖了。

那怎么修改呢?

答案也很简单,使用putIfAbsent()方法,它会保证元素不存在时才插入元素,如下:

public void safeUpdate(Integer key, Integer value) {
    map.putIfAbsent(key, value);
}

那么,如果上面oldValue不是跟null比较,而是跟一个特定的值比如1进行比较怎么办?也就是下面这样:

public void unsafeUpdate(Integer key, Integer value) {
    Integer oldValue = map.get(key);
    if (oldValue == 1) {
        map.put(key, value);
    }
}

这样的话就没办法使用putIfAbsent()方法了。

其实,ConcurrentHashMap还提供了另一个方法叫replace(K key, V oldValue, V newValue)可以解决这个问题。

replace(K key, V oldValue, V newValue)这个方法可不能乱用,如果传入的newValue是null,则会删除元素。

public void safeUpdate(Integer key, Integer value) {
    map.replace(key, 1, value);
}

那么,如果if之后不是简单的put()操作,而是还有其它业务操作,之后才是put(),比如下面这样,这该怎么办呢?

public void unsafeUpdate(Integer key, Integer value) {
    Integer oldValue = map.get(key);
    if (oldValue == 1) {
        System.out.println(System.currentTimeMillis());
        /**
         * 其它业务操作
         */
        System.out.println(System.currentTimeMillis());
      
        map.put(key, value);
    }
}

这时候就没办法使用ConcurrentHashMap提供的方法了,只能业务自己来保证线程安全了,比如下面这样:

public void safeUpdate(Integer key, Integer value) {
    synchronized (map) {
        Integer oldValue = map.get(key);
        if (oldValue == null) {
            System.out.println(System.currentTimeMillis());
            /**
             * 其它业务操作
             */
            System.out.println(System.currentTimeMillis());

            map.put(key, value);
        }
    }
}

这样虽然不太友好,但是最起码能保证业务逻辑是正确的。

当然,这里使用ConcurrentHashMap的意义也就不大了,可以换成普通的HashMap了。

上面只是举一个简单的例子,我们不能听说ConcurrentHashMap是线程安全的,就认为它无论什么情况下都是线程安全的,还是那句话尽信书不如无书。

这也正是我们读源码的目的之一,了解其本质,才能在我们的实际工作中少挖坑,不论是挖给别人还是挖给自己^^。


qrcode

ConcurrentHashMap源码分析

ConcurrentHashMap源码分析

/** JDK7 */
public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V>, Serializable {

private static final long serialVersionUID = 7249069246763182397L;

/**
 * 默认的初始容量是16
 */
static final int DEFAULT_INITIAL_CAPACITY = 16;

/**
 * 默认的加载因子是0.75
 */
static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
 * 默认的并发级别是16
 */
static final int DEFAULT_CONCURRENCY_LEVEL = 16;

/**
 * The maximum capacity, used if a higher value is implicitly specified by either of the constructors with arguments.
 * MUST be a power of two <= 1<<30 to ensure that entries are indexable using ints.
 */
static final int MAXIMUM_CAPACITY = 1 << 30;

/**
 * The minimum capacity for per-segment tables.
 * Must be a power of two, at least two to avoid immediate resizing on next use after lazy construction.
 */
static final int MIN_SEGMENT_TABLE_CAPACITY = 2;

/**
 * The maximum number of segments to allow; used to bound constructor arguments.
 * Must be power of two less than 1 << 24.
 */
static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

/**
 * Number of unsynchronized retries in size and containsValue methods before resorting to locking. 
 * This is used to avoid unbounded retries if tables undergo continuous modification which would make it impossible to obtain an accurate result.
 */
static final int RETRIES_BEFORE_LOCK = 2;

/**
 * 在计算数组的下标时会用到该值:hashValue & segmentMask
 * 
 * segmentMask = segments.length - 1
 */
final int segmentMask;

/**
 * Shift value for indexing within segments.
 */
final int segmentShift;

/**
 * Segment数组,Segment的功能类似于HashTable。
 * 
 */
final Segment<K,V>[] segments;

/**
 * ConcurrentHashMap的构造函数
 * 参数:
 * 	initialCapacity:	ConcurrentHashMap的初始容量
 * 	loadFactor:		Segment的加载因子(Segment数组是不可以扩容的,ConcurrentHashMap的扩容是通过Segment的扩容实现的)
 * 	concurrencyLevel:	并发级别,默认为16,根据该参数计算出Segment数组的长度,Segment数组的长度必须是2的整数次幂,并且一旦设定,不可改变。
 * 		eg:指定concurrencyLevel为17,则Segment数组的长度为32。
 *
 */
@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
	
    if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException();
	
    if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS;
	
	// 根据concurrencyLevel参数计算出一个2的整数次幂的数,作为Segment数组的长度。
    // Find power-of-two sizes best matching arguments
    int sshift = 0;		// 2的指数
    int ssize = 1;		// Segment数组的长度:ssize=2^sshift
    while (ssize < concurrencyLevel) {
        ++sshift;
        ssize <<= 1;
    }
	
    this.segmentShift = 32 - sshift;
    this.segmentMask = ssize - 1;
	
	// 确定Segment数组中第一个Segment(s0)的HashEntry数组的长度。
    if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY;
    int c = initialCapacity / ssize;
    if (c * ssize < initialCapacity) ++c;
    int cap = MIN_SEGMENT_TABLE_CAPACITY;	// HashEntry数组的长度,最小为2(最小值设为2,是为了避免插入一个元素后,就开始扩容)
    while (cap < c)
        cap <<= 1;
	
    // new一个Segment对象
    Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]);
	
	// new一个的Segment数组,大小为ssize
    Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
	
	// 将S0放到Segment数组的第一个位置。Segment数组中其它位置的Segment在调用put()方法时会被初始化。
    UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
    this.segments = ss;
}


/**
 * key和value都不能为null,否则报空指针异常。
 *
 */
@SuppressWarnings("unchecked")
public V put(K key, V value) {
    Segment<K,V> s;
    if (value == null) throw new NullPointerException();
	
	// 根据key计算出Segment数组的下标j,计算方法与HashMap获取数组下标的方法类似,都是使用 hashVale & (2^n-1)。
    int hash = hash(key);
    int j = (hash >>> segmentShift) & segmentMask;	// segmentMask = Segment数组的长度-1,此处类似于HashMap中的:h & (length-1);
	
	// 对segments[j]进行初始化
    if ((s = (Segment<K,V>)UNSAFE.getObject(segments, (j << SSHIFT) + SBASE)) == null) // nonvolatile; recheck; in ensureSegment
        s = ensureSegment(j);
	
	// 将key-value放到segments[j]的HashEntry数组的特定位置上。
    return s.put(key, hash, value, false);
}



/**
 * Returns the segment for the given index, creating it and
 * recording in segment table (via CAS) if not already present.
 *
 * [@param](https://my.oschina.net/u/2303379) k the index
 * [@return](https://my.oschina.net/u/556800) the segment
 */
@SuppressWarnings("unchecked")
private Segment<K,V> ensureSegment(int k) {
    final Segment<K,V>[] ss = this.segments;
    long u = (k << SSHIFT) + SBASE; // raw offset
    Segment<K,V> seg;
    if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
		
        Segment<K,V> proto = ss[0]; // Segment数组中的第一个Segment,即segments[0]
        int cap = proto.table.length;
        float lf = proto.loadFactor;
        int threshold = (int)(cap * lf);
        HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
		
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { // recheck
		
			// 新建一个Segment对象
			// 该对象的加载因子等于segments[0]的加载因子,该对象的HashEntry数组(table)的初始容量等于segments[0]的HashEntry数组(table)当前的容量。
			// 注:此时,segments[0]可能已经扩容多次了。
            Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
			
			// 将新建的Segment对象添加到Segment数组(segments)指定的位置,通过循环和CAS来保证多线程环境下数据的安全
            while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
                if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                    break;
            }
        }
    }
    return seg;
}

/**
 * 
 * Returns the value to which the specified key is mapped, or null if this map contains no mapping for the key.
 */
public V get(Object key) {
    Segment<K,V> s; // manually integrate access methods to reduce overhead
    HashEntry<K,V>[] tab;
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) {
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) {
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}


// ************************************************ 补充:jdk1.6中ConcurrentHashMap的get方法 ************************************************
	
	/**
	 * 	jdk1.6中ConcurrentHashMap的get方法:
	 * 	    1)首先根据key获取对应的HashEntry,若找不到对应的HashEntry,则直接返回null。
	 * 	    2)若找到了对应的HashEntry,则以不加锁的方式获取value(即HashEntry.value),若value!=null,则直接返回。
	 * 	        注:HashEntry的value属性是volatile的,故value!=null时可直接返回value。
	 * 	    3)若value==null,则以加锁的方式来获取value并返回。
	 *          注:HashEntry!=null,但是HashEntry.value==null的情况是由于发生了指令重排序造成的。
	 */
	public V get(Object key) {
		int hash = hash(key.hashCode());
		return segmentFor(hash).get(key, hash);
	}

	/**
	 * ConcurrentHashMap.Segment的get方法:采用乐观锁的方式来保证数据的同步。
	 * 
	 * Note:这里需要考虑到并发的情景:
	 * 	put方法中新建一个HashEntry的语句:tab[index] = new HashEntry<K,V>(key, hash, first, value); 
	 * 		1)这行代码可以分解为如下的3个步骤:
	 * 			①类的加载、连接(验证->准备->解析)。  
	 * 			②初始化对象。							注:初始化后,类的加载就完成了。  
	 * 			③将tab[index]指向刚分配的内存地址。	注:这一步和类的加载过程没有任何关系
	 * 		2)其中的②和③可能会被重排序:
	 * 			a compiler happens to reorder a HashEntry initialization with its table assignment
	 *			分配对象的内存空间 --> 将tab[index]指向刚分配的内存地址(即给tab[index]赋值) --> 初始化对象(给HashEntry的key、hash、next、value赋值)。
	 *		3)如果另一个线程执行put方法时,tab[index]已经被赋值,HashEntry的key、hash也已经被赋值,但是value还没来的及赋值,此时当前正在执行get方法的线程很可能会遇到:
	 *		  e(即tab[index]) != null 且 e.hash == hash && key.equals(e.key) 且 e.value = null 的情况,
	 *		  故获取到e.value后需要判断一下e.value是否为空,如果e.value为空,则需要加锁重新读取。
	 */
	V get(Object key, int hash) {
		if (count != 0) { 		// read-volatile	(transient volatile int count;)
			HashEntry<K,V> e = getFirst(hash);
			while (e != null) {
				if (e.hash == hash && key.equals(e.key)) { // 若key.equals(e.key),说明此时找到了该key对应的HashEntry
					V v = e.value;	
					if (v != null)  // 判断是否为空。
						return v;
					return readValueUnderLock(e); // recheck 加锁重读
				}
				e = e.next;
			}
		}
		return null;
	}

	/**
	 * ConcurrentHashMap.Segment的readValueUnderLock方法
	 * 
	 * 【Reads value field of an entry under lock. Called if value field ever appears to be null. 
	 * This is possible only if a compiler happens to reorder a HashEntry initialization with its table assignment, which is legal under memory model but is not known to ever occur.】
	 */
	V readValueUnderLock(HashEntry<K,V> e) {
		lock();
		try {
			return e.value;
		} finally {
			unlock();
		}
	}
	
	/**
	 * segmentFor的get方法
	 */
	final Segment<K,V> segmentFor(int hash) {
		return segments[(hash >>> segmentShift) & segmentMask];
	}
	
	/**
	 * ConcurrentHashMap list entry. Note that this is never exported out as a user-visible Map.Entry.
	 *
	 * Because the value field is volatile, not final, it is legal wrt the Java Memory Model for an unsynchronized reader to see null instead of initial value when read via a data race.  
	 * Although a reordering leading to this is not likely to ever actually occur, 
	 * the Segment.readValueUnderLock method is used as a backup in case a null (pre-initialized) value is ever seen in an unsynchronized access method.
	 */
	static final class HashEntry<K,V> {
		final K key;
		final int hash;
		volatile V value;			// value被volatile修饰:如果该HashEntry的value被其它线程修改了,volatile可以保证其它线程的get()方法获取到的value是最新的。
		final HashEntry<K,V> next; 

		HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
			this.key = key;
			this.hash = hash;
			this.next = next;
			this.value = value;
		}

		@SuppressWarnings("unchecked")
		static final <K,V> HashEntry<K,V>[] newArray(int i) {
			return new HashEntry[i];
		}
	}
	
// ************************************************ jdk1.6中ConcurrentHashMap的get方法 ************************************************


/**
 * Segment类似一个HashTable
 * 
 * Segments are specialized versions of hash tables.  
 * This subclasses from ReentrantLock opportunistically, just to simplify some locking and avoid separate construction.
 */
static final class Segment<K,V> extends ReentrantLock implements Serializable {

    private static final long serialVersionUID = 2249069246763182397L;

    /**
     * The maximum number of times to tryLock in a prescan before possibly blocking on acquire in preparation for a locked segment operation. 
     * On multiprocessors, using a bounded number of retries maintains cache acquired while locating nodes.
     */
    static final int MAX_SCAN_RETRIES =
        Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;

    /**
     * entry数组,用来储存数据的
     * The per-segment table. Elements are accessed via entryAt/setEntryAt providing volatile semantics.
     */
    transient volatile HashEntry<K,V>[] table;

    /**
     * Segment中元素的数量
     * 
     * The number of elements. 
     * Accessed only either within locks or among other volatile reads that maintain visibility.
     */
    transient int count;

    /**
     * 对table的大小造成影响的操作(eg:put、remove)次数
     * 
     * The total number of mutative operations in this segment.
     * Even though this may overflows 32 bits, it provides sufficient accuracy for stability checks in CHM isEmpty() and size() methods.  
     * Accessed only either within locks or among other volatile reads that maintain visibility.
     */
    transient int modCount;

    /**
     * Segment的阀值,threshold = capacity * loadFactor
     */
    transient int threshold;

    /**
     * Segment的负载因子
     */
    final float loadFactor;

    Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
        this.loadFactor = lf;
        this.threshold = threshold;
        this.table = tab;
    }

    final V put(K key, int hash, V value, boolean onlyIfAbsent) {
		
		// 获取Segment的独占锁,如果该key对应的node(HashEntry)存在,则node的值为null;如果node不存在,则new一个HashEntry并赋值给node。
        HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value);
        V oldValue;
        try {
            HashEntry<K,V>[] tab = table;
            int index = (tab.length - 1) & hash;
            HashEntry<K,V> first = entryAt(tab, index);
            for (HashEntry<K,V> e = first;;) {
                if (e != null) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        if (!onlyIfAbsent) {
                            e.value = value;
                            ++modCount;
                        }
                        break;
                    }
                    e = e.next;
                } else {
                    if (node != null)			// node!=null说明该key对应的HashEntry之前不存在,此时node为scanAndLockForPut()方法中new的那个HashEntry
                        node.setNext(first);
                    else						// node=null 说明该key对应的HashEntry之前就存在,故这里new一个HashEntry并赋值给node。
                        node = new HashEntry<K,V>(hash, key, value, first); 
						
                    int c = count + 1;
                    if (c > threshold && tab.length < MAXIMUM_CAPACITY)	// 若Segment的容量达到阀值,则扩容。
                        rehash(node);
                    else
                        setEntryAt(tab, index, node);					// 若Segment的容量未达到阀值,则将node添加到链表的头部。
                    ++modCount;
                    count = c;
                    oldValue = null;
                    break;
                }
            }
        } finally {
			// 释放Segment的独占锁
            unlock();
        }
        return oldValue;
    }

    /**
     * 寻找该key对应的HashEntry,如果找到则返回null;如果没有找到,则new一个HashEntry并返回。
     * 在该方法返回前,当前线程必定已经持有该Segment的锁了。
     * 
     * Scans for a node containing given key while trying to acquire lock, creating and returning one if not found. 
     * Upon return, guarantees that lock is held. 
     *
     * @return a new node if key not found, else null
     */
    private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
        HashEntry<K,V> first = entryForHash(this, hash); // 这里的this指当前的Segment
        HashEntry<K,V> e = first;
        HashEntry<K,V> node = null;
        int retries = -1; // negative while locating node
		
        while (!tryLock()) {	// 循环tryLock()来确保获取到Segment的锁。
            HashEntry<K,V> f; // to recheck first below
            if (retries < 0) {
                if (e == null) {
                    if (node == null) // speculatively create node
                        node = new HashEntry<K,V>(hash, key, value, null);
                    retries = 0;
                }
                else if (key.equals(e.key))
                    retries = 0;
                else
                    e = e.next;
            }
			// 如果遍历的次数(retries)超过了MAX_SCAN_RETRIES(单核时值为1,多核时值为64),则使用lock()方法阻塞式的获取锁。
            else if (++retries > MAX_SCAN_RETRIES) {
                lock();
                break;
            }
			// 如果有新的元素被添加到该链表(HashEntry)的头部,则重新遍历
            else if ((retries & 1) == 0 && (f = entryForHash(this, hash)) != first) { 
                e = first = f; // re-traverse if entry changed
                retries = -1;
            }
        }
        return node;
    }
	

    /**
     * 扩容为之前的2倍。
     * Doubles size of table and repacks entries, also adding the given node to new table
     */
    @SuppressWarnings("unchecked")
    private void rehash(HashEntry<K,V> node) {
        /*
         * Reclassify nodes in each list to new table.  Because we
         * Because we are using power-of-two expansion, the elements from each bin must either stay at same index, or move with a power of two offset. 
		 * We eliminate unnecessary node
         * creation by catching cases where old nodes can be
         * reused because their next fields won''t change.
         * Statistically, at the default threshold, only about
         * one-sixth of them need cloning when a table
         * doubles. The nodes they replace will be garbage
         * collectable as soon as they are no longer referenced by
         * any reader thread that may be in the midst of
         * concurrently traversing table. Entry accesses use plain
         * array indexing because they are followed by volatile
         * table write.
         */
        HashEntry<K,V>[] oldTable = table;
        int oldCapacity = oldTable.length;
        int newCapacity = oldCapacity << 1;		// 扩容为之前的2倍
        threshold = (int)(newCapacity * loadFactor);
        HashEntry<K,V>[] newTable = (HashEntry<K,V>[]) new HashEntry[newCapacity];
        int sizeMask = newCapacity - 1;
        for (int i = 0; i < oldCapacity ; i++) {
            HashEntry<K,V> e = oldTable[i];
            if (e != null) {
                HashEntry<K,V> next = e.next;
                int idx = e.hash & sizeMask;
                if (next == null)   //  如果该链表上只有一个元素
                    newTable[idx] = e;
                else { // Reuse consecutive sequence at same slot
                    HashEntry<K,V> lastRun = e;
                    int lastIdx = idx;
                    for (HashEntry<K,V> last = next; last != null; last = last.next) {
                        int k = last.hash & sizeMask;
                        if (k != lastIdx) {
                            lastIdx = k;
                            lastRun = last;
                        }
                    }
                    newTable[lastIdx] = lastRun;
                    // Clone remaining nodes
                    for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                        V v = p.value;
                        int h = p.hash;
                        int k = h & sizeMask;
                        HashEntry<K,V> n = newTable[k];
                        newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                    }
                }
            }
        }
        int nodeIndex = node.hash & sizeMask; // add the new node
        node.setNext(newTable[nodeIndex]);
        newTable[nodeIndex] = node;
        table = newTable;
    }


    /**
     * Scans for a node containing the given key while trying to acquire lock for a remove or replace operation. 
	 * Upon return, guarantees that lock is held.  
	 * Note that we must lock even if the key is not found, to ensure sequential consistency of updates.
     */
    private void scanAndLock(Object key, int hash) {
        // similar to but simpler than scanAndLockForPut
        HashEntry<K,V> first = entryForHash(this, hash);
        HashEntry<K,V> e = first;
        int retries = -1;
        while (!tryLock()) {
            HashEntry<K,V> f;
            if (retries < 0) {
                if (e == null || key.equals(e.key))
                    retries = 0;
                else
                    e = e.next;
            }
            else if (++retries > MAX_SCAN_RETRIES) {
                lock();
                break;
            }
            else if ((retries & 1) == 0 &&
                     (f = entryForHash(this, hash)) != first) {
                e = first = f;
                retries = -1;
            }
        }
    }
}

/**
 * 
 * value被volatile修饰:如果该HashEntry的value被其它线程修改了,volatile可以保证其它线程的get()方法获取到的value是最新的。
 * 
 * ConcurrentHashMap list entry.
 */
static final class HashEntry<K,V> {
    final int hash;
    final K key;
    volatile V value;
    volatile HashEntry<K,V> next;

    HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }

    /**
     * Sets next field with volatile write semantics.  (See above
     * about use of putOrderedObject.)
     */
    final void setNext(HashEntry<K,V> n) {
        UNSAFE.putOrderedObject(this, nextOffset, n);
    }

    // Unsafe mechanics
    static final sun.misc.Unsafe UNSAFE;
    static final long nextOffset;
    static {
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class k = HashEntry.class;
            nextOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("next"));
        } catch (Exception e) {
            throw new Error(e);
        }
    }
}


/**
 * 
 * 首先以不加锁的方式获取3次(注:jdk6中是2次),如果其中任意连续两次的modCounts相等,则直接返回,否则以加锁的方式重新获取并返回。
 * 
 * Returns the number of key-value mappings in this map.  
 * If the map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns Integer.MAX_VALUE.
 */
public int size() {
    // Try a few times to get accurate count. On failure due to continuous async changes in table, resort to locking.
    final Segment<K,V>[] segments = this.segments;
    int size;
    boolean overflow; // true if size overflows 32 bits
    long sum;         // sum of modCounts
    long last = 0L;   // 记录上一次的sum
    int retries = -1; // 记录获取的次数(0表示第一次,1表示第二次,2表示第三次)。
    try {
        for (;;) {
			
			// 如果获取的次数超过3次,则给segments数组中的所有Segment加锁。
            if (retries++ == RETRIES_BEFORE_LOCK) {  // RETRIES_BEFORE_LOCK=2
                for (int j = 0; j < segments.length; ++j)
                    ensureSegment(j).lock(); 
            }
			
            sum = 0L;
            size = 0;
            overflow = false;
			
            for (int j = 0; j < segments.length; ++j) {
                Segment<K,V> seg = segmentAt(segments, j);
                if (seg != null) {
                    sum += seg.modCount;			// map的modCount等于所有Segment的modCount相加
                    int c = seg.count;
                    if (c < 0 || (size += c) < 0)	// map的size等于所有Segment的count相加 即:size += c 
                        overflow = true;
                }
            }
			
			// 判断本次获取的modCounts和上一次获取的modCounts是否相等,如果相等,则跳出循环。
            if (sum == last)  break;
            last = sum;
        }
    } finally {
		// 如果获取的次数超过3次,给segments数组中的所有Segment解锁。
        if (retries > RETRIES_BEFORE_LOCK) {	
            for (int j = 0; j < segments.length; ++j)
                segmentAt(segments, j).unlock();
        }
    }
    return overflow ? Integer.MAX_VALUE : size;
}

// ...

}

ConcurrentHashMap源码分析-Java8

ConcurrentHashMap源码分析-Java8

<h4 id="1concurrenthashmap特性">1.ConcurrentHashMap特性

说明:因为ConcurrentHashMap单词太长,所以下面均适用CHM替代ConcurrentHashMap

  • 同为线程安全集合,但CHM没有任何访问操作需要锁定全表。这也注定了CHM上的操作效率之高。
  • 表访问需要volatile/atomic读,写和CAS.这通过使用内在函数(sun.misc.Unsafe)完成。
  • 向一个空bin中插入节点是通过CAS完成的,其它的更新操作(insert,delete,update)都需要锁lock。
  • 从JDK8开始,CHM使用CAS算法替代了Segment的概念,保证线程安全。
  • 构成结构:bin数组+链表+红黑树 红黑树被包装在TreeBin内
  • 扩容机制:2倍扩容
  • 常量:
    • 默认容量:16;
    • 负载因子:0.75 说明:在构造函数中重写此值只会影响初始表的容量,而不会使用实际的浮点值。
    • 链表转红黑树阈值:8
    • 红黑树转链表阈值:6
    • table转为红黑树阈值:64
    • resize时的最小并行度:16(因为默认16个bin)
  • CHM的key,value都不能为null
  • 访问操作(get等)和更新操作(remove等)同时发生时,根据happens-before原则,更新操作先执行,读操作后执行,从而保证了检索操作获取的值一定是最新值。
  • 聚合状态方法的结果包括:size,isEmpty,containsValue通常都是仅当map不在其它线程中进行并发更新时才有用。
  • 批量操作可以接受一个并行阈值参数parallelismThreshold。
    • 如果当前map的size预估值比给定的阈值小,则方法顺序执行。
    • 如果给定阈值=Long.MAX_VALUE,则不会出现并行操作。
    • 如果给定阈值=1,则会导致并行最大化,通过使用ForkJoinPool.commonPool()方法,对子任务分离。
  • 并行操作通常比顺序操作快,但不能保证一定是这样。并行操作更慢的情况有:
    • 如果并行计算的基础工作比计算本身更昂贵,那么小map上的并行操作可能比顺序形式执行更慢。
    • 如果所有处理器都忙于执行不相关的任务,并行化可能无法实现太多的实际并行性。(无法形成流水线操作)
  • 支持序列化,不支持浅拷贝
  • 两个线程访问同一个bin中不同的元素的锁争用概率为:1 / (8 * #elements)
  • TreeBins存在的意义:保护了我们免于因过度resize带来的最坏影响。
  • 每一个bin中的元素到达新的bin后要么索引不变,要么产生2的次幂的位移。我们通过捕获旧节点可以重用的情况来消除不必要的节点创建。平均而言,当table进行resize时,只有1/6的节点需要进行clone。
  • table进行resize时,其它线程可以加入协助resize的过程(这不是为了获取锁),从而使得平均聚合等待时间变短。
  • 在遇到转发节点时,遍历会移动到新table而无需重新访问节点
  • 能够用TreeMap替代TreeBin?
    • 不能。
    • 原因:TreeBins的查询及与查询相关的操作都使用了一种特殊的比较形式。TreeBins中包含的元素可能在实现Comparable上的原则不一样,所以对于它们之间的比较,则无法调用Compareto()方法。为了解决这一问题,tree通过hash值对其排序。如果Comparable.compareto 可用的话,再用这个方法对元素排序。在查找节点时,如果元素不具有可比性或比较为0,则可能需要对此节点对左右孩子都进行查询。如果所有元素都不是可比较的并且具有相同的哈希值,则需要对全table进行扫描。
  • TreeBins也需要额外的锁定机制。list更新过程中依旧可以进行遍历,但是红黑树在更新时却不能进行遍历,因为红黑树的调整可能会改变树的根节点,也可能改变各个节点之间的连接情况。
  • TreeBins包含一个简单的读写锁定机制,依赖于主要的同步策略:
    • 插入,删除的结构调整会调用lock机制;
    • 如果在结构调整前有读操作,则必须读操作完成后,再进行结构的调整操作。遵循happes-before原则。
  • 扩展AbstractMap,但这只是仅仅为了与这个类的以前版本兼容。

方法、域的分析

  • hash值求法
    • spread(int h)
      • 哈希值=(h ^ (h >>> 16)) & HASH_BITS;//消除异或结果的最高位影响
      • h:key的hashcode
    • 方法分析:hash值无符号右移16位原因:因为table使用的是2的整数次幂的掩码,仅在当前掩码之上的位上变化的散列集将会总是碰撞。(比如,Float键的集合在小table中保持连续的整数)所以我们应用一个转换,将高位的影响向下扩展。这是在速度,性能,分布上做的一个平衡。 因为许多常见的哈希集合已经合理分布(它们就不会在spread机制中受益)因为我们已经使用了红黑树对bin中的大量碰撞做了处理,因此我们只是以最简单的方式做一些移位,然后进行异或运算,以减少系统损失,并合并由于表边界而不会用于索引计算的最高位的影响(也就是&运算)。
  • 扩容方法:
    • tableSizefor(int c)
      • c: c=1.5*capaticy+1;
      • 返回值:>=c的第一个2的整数次幂
    • 方法分析: 如果c为2的整数次幂,则返回c; 如果c不是2的整数次幂,则返回第一个比c大的2的整数次幂; eg:c=16,则返回结果为16;c=30,则返回结果为32;
  • 三个访问table的方法
    • 方法说明:
      • 都是属于volatile类型的方法,所以即使在resize的过程中,访问对table中的元素获取的结果也是正确的
      • 对setTabAt()方法的调用总是发生在lock区域内,所以原则上不需要完整的volatile语义,但是目前的代码还是保守地选择了volatile方式。
    • 方法
      • static final Node tabAt(Node[] tab, int i)
      • static final boolean casTabAt(Node[] tab, int i, Node c, Node v)
      • static final void setTabAt(Node[] tab, int i, Node v)
  • bin数组:transient volatile Node[] table;
  • sizeCtl:用于控制table初始化和resize的一个变量。
    • 值为负数:table正在初始化or正在resize
    • sizeCtl=-1:正在初始化;
    • sizeCtl=-(1+n):当前有n个线程正在进行resize;
    • 当table未初始化时,保存创建时使用的初始表大小,或默认为0。初始化后,保存下一个要调整table大小的元素计数值。
  • 4个构造函数
    • ConcurrentHashMap()
    • ConcurrentHashMap(int initialCapacity)
    • ConcurrentHashMap(Map

package sourcecode.analysis;
/**
 * @Author: cxh
 * @CreateTime: 18/4/3 16:29
 * @ProjectName: JavaBaseTest
 */

import java.io.ObjectStreamField;
import java.io.Serializable;
import <a href="https://www.jb51.cc/tag/javalang/" target="_blank">java.lang</a>.*;
import <a href="https://www.jb51.cc/tag/javalang/" target="_blank">java.lang</a>.reflect.P<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>meterizedType;
import <a href="https://www.jb51.cc/tag/javalang/" target="_blank">java.lang</a>.reflect.Type;
import java.util.AbstractMap;
import java.util.Arrays;
import java.util.Collection;
import java.util.Comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>tor;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.Hashtable;
import java.util.I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.CountedCompleter;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.atomic.<a href="https://www.jb51.cc/tag/atomicreference/" target="_blank">atomicreference</a>;
import java.util.concurrent.locks.LockSupport;
import java.util.concurrent.locks.<a href="https://www.jb51.cc/tag/reentrantlock/" target="_blank">reentrantlock</a>;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.BinaryOperator;
import java.util.function.Consumer;
import java.util.function.DoubleBinaryOperator;
import java.util.function.Function;
import java.util.function.IntBinaryOperator;
import java.util.function.LongBinaryOperator;
import java.util.function.T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleBiFunction;
import java.util.function.T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleFunction;
import java.util.function.ToIntBiFunction;
import java.util.function.ToIntFunction;
import java.util.function.ToLongBiFunction;
import java.util.function.ToLongFunction;
import java.util.stream.Stream;

/**
 * Hashtable<a href="https://www.jb51.cc/tag/zhichi/" target="_blank">支持</a>高并发检索,同时<a href="https://www.jb51.cc/tag/zhichi/" target="_blank">支持</a>高并发更新.
 * ConcurrentHashMap和Hashtable遵守相同的<a href="https://www.jb51.cc/tag/gongneng/" target="_blank">功能</a>规范,并且包含与Hashtable每种<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>相对应的<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>版本.
 * 但是,尽管所有操作都是线程安全的,但检索操作并不需要锁定,并且没有任何访问操作需要锁定全表.
 * 这个类可以在依赖线程安全性的程序中与Hashtable完全互操作,但不依赖于它的同步细节.
 *
 * 检索操作(<a href="https://www.jb51.cc/tag/baokuo/" target="_blank">包括</a>get)通常不会对表加锁,因此可能会和更新操作(如put,remove)同时发生.
 * 检索反映了最近完成的更新操作的结果.更正式的说:对<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>key的value的更新操作和读操作遵守happens-before
 * 原则,所以同时发生检索和更新操作时,更新操作先执行,读操作<a href="https://www.jb51.cc/tag/houzhixing/" target="_blank">后执行</a>,从而保证了检索操作<a href="https://www.jb51.cc/tag/huoqu/" target="_blank">获取</a>的值一定是最新线程
 * 更新的值.
 * 对整体操作(如putAll和clear),并发检索可能只会反映出一部分条目的插入和<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a>.同样的,I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tors,Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tors
 * 和Enumerations只是在一定程度上反映了哈希表的状态or反映的是从i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor/enumeration它们创建后哈希表的状态.
 * 它们并不会抛出并发异常ConcurrentModificationException.但是,迭代器被设计为一次只能由<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>线程使用.
 * 请记住,聚合状态<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>的结果<a href="https://www.jb51.cc/tag/baokuo/" target="_blank">包括</a>:size,isEmpty,containsValue通常都是仅当map不在其它线程中进行并发更新时才有用.
 * 否则,这些<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>的结果反映了可能足以用于监视或估计目的的暂态,但不适用于程序控制。
 *
 * 当碰撞冲突很多时(如不同hash值的key通过取模运算后进入了相同的slot),table会<a href="https://www.jb51.cc/tag/zidong/" target="_blank">自动</a>扩容,* slot扩容后大小为原来的2倍(和扩容时0.75<a href="https://www.jb51.cc/tag/fuzai/" target="_blank">负载</a>因子阈值保持一致)
 * 随着映射的<a href="https://www.jb51.cc/tag/tianjia/" target="_blank">添加</a>和<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a>,这个平均值可能会有很大的变化,但是总的来说,针对散列表,这已经是在时间/空间上做了折衷.
 * 但是,调整这个或任何其他类型的哈希表可能是<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>相对较慢的操作.在可能的情况下,通过构造器<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>,指定initialCapacity
 * 是比较好的方式.另外<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>可选的构造<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>参数loadFactor提供了另一种定制初始表容量的<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>,通过指定要用于计算给定元素数
 * 分配空间量的表密度来<a href="https://www.jb51.cc/tag/zidingyi/" target="_blank">自定义</a>初始表容量.此外,为了与此类的以前版本兼容,构造<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>可以选择指定预期的concurrencyLevel
 * 作为内部大小调整的附加<a href="https://www.jb51.cc/tag/tishi/" target="_blank">提示</a>.
 * 注意:如果很多key都用一样的hashcode,则哈希表的<a href="https://www.jb51.cc/tag/xingneng/" target="_blank">性能</a>一定会降低.为了减弱这种影响,当key是可比较的对象时(实现了
 * Comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>ble接口),则ConcurrentHashMap可以通过对key的排序来打破这种关系.
 *
 * ConcurrentHashMap的Set<a href="https://www.jb51.cc/tag/duixiangchuangjian/" target="_blank">对象创建</a>方式有:newKeySet(),newKeySet(int),* 如果所有的key都是有效的,且values都无效(or所有的value值都一样),则还有一种视图创建方式:keySet(Object).
 *
 * ConcurrentHashMap可以用作可伸缩频率map(直方图或多重集的一种形式),这可以使用LongAdder作为value,* 通过co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>teIfAbsent来初始化.比如:
 * 向ConcurrentHashMap<String,LongAdder>类型的变量freqs<a href="https://www.jb51.cc/tag/tianjia/" target="_blank">添加</a><a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>count,你可以使用lambda表达式如下:
 * freqs.co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>teIfAbsent(k -> new LongAdder()).increment();
 *
 * 此类及其视图和迭代器实现了Map和I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor接口的所有可选<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>。
 *
 * ConcurrentHashMap的key和value都不能为null,这一点和hashtable一致.
 *
 * ConcurrentHashMap<a href="https://www.jb51.cc/tag/zhichi/" target="_blank">支持</a>一组顺序操作和并行的批量操作,和大多数Stream<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>不同,该操作被设计为线程安全
 * 且经常应用于即使由其他线程同时更新的映射;例如,在计算共享<a href="https://www.jb51.cc/tag/zhuce/" target="_blank">注册</a>表中值的快照<a href="https://www.jb51.cc/tag/zhaiyao/" target="_blank">摘要</a>时。
 * 有3种操作,每一种有4种形式,接受<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>包含keys,values,Entries,(key,value)参数的<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>.
 * 因为ConcurrentHashMap的元素没有以任何特定的方式排序,并且可能在不同的并行执行中以不同的顺序处理,
 * 所以提供的<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>的正确性不应取决于任何排序,及在过程中可能会瞬时改变的对象or值;除了forEach<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>,其它<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>在理想情况下,* 应该是不会改变ConcurrentHashMap的.
 * Map.Entry上的块操作<a href="https://www.jb51.cc/tag/buzhichi/" target="_blank">不支持</a><a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>setValue().
 *
 * forEach:对每个元素执行给定操作.
 *
 * search:返回在每个元素上应用给定<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>的第<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>可用的非null元素;找到后不再进行后续的<a href="https://www.jb51.cc/tag/sousuo/" target="_blank">搜索</a>.
 *
 * reduce:计算每<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>元素.
 * 设计的reduce<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>不能依赖元素顺序
 *
 * 批量操作可以接受<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>并行阈值参数p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold.
 * 如果当前map的size预估值比给定的阈值小,则<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>顺序执行.
 * 所以,如果给定阈值=Long.MAX_VALUE,则不会出现并行操作.
 *      如果给定阈值=1,则会导致并行最大化,通过使用ForkJoinPool.commonPool()<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>,对子任务分离.
 * 通常情况下,您最初会选择这些极端值中的<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>,然后衡量使用中间开销与吞吐量之<a href="https://www.jb51.cc/tag/jiande/" target="_blank">间的</a>值的<a href="https://www.jb51.cc/tag/xingneng/" target="_blank">性能</a>。
 *
 * 批量操作的并发<a href="https://www.jb51.cc/tag/shuxing/" target="_blank">属性</a>来自ConcurrentHashMap的并发<a href="https://www.jb51.cc/tag/shuxing/" target="_blank">属性</a>:
 * 插入,更新操作happens-before访问操作.
 * 任何批量操作的结果反映了这些每元素关系的组成(但是,除非以某种方式知道它是静止的,否则就整个map而言,不一定是原子的)
 * 相反,因为映射中的键和值永远不会为null,所以null作为当前缺少任何结果的可靠原子指标。
 * 为了保持这个<a href="https://www.jb51.cc/tag/shuxing/" target="_blank">属性</a>,null作为所有非标量约简操作的隐含基础。
 * 对于double,long和int版本,base应该与其他任何值结合时返回其他值(更正式地说,它应该是减少的标识元素)。
 * 最常见的reduce<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>接口有这些<a href="https://www.jb51.cc/tag/shuxing/" target="_blank">属性</a>;例如,用MAX_VALUE或0或作为计算和的初始值。
 *
 * 作为参数提供的<a href="https://www.jb51.cc/tag/sousuo/" target="_blank">搜索</a>和转换<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>应该类似地返回null来指示无结果(<a href="https://www.jb51.cc/tag/zaizhe/" target="_blank">在这</a>种情况下,它不被使用)
 * 在映射的reduce<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>接口中,这也使得变换能够用作过滤器,如果元素不能合并,则返回null.
 * 在search或者reduce操作中使用它们前,您可以通过在“null意味着现在没有”规则下自己组合它们来创建复合转换和过滤。
 *
 * 接受和/或返回Entry参数的<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>维护键值关联.注意可以使用AbstractMap.SimpleEntry(k,v)作为空白entry参数.
 *
 * 批量操作可能会突然完成,从而引发<a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a><a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>抛出异常.
 * 请记住:在处理这样的异常时,其他并发执行的<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>也可能引发异常,或者即使第<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>异常没有发生,其它异常也可能发生。
 *
 * 并行操作通常比顺序操作快,但不能保证一定是这样.
 * 并行操作更慢的情况有:
 * 1.如果并行计算的基础工作比计算本身更昂贵,那么小map上的并行操作可能比顺序形式执行更慢。
 * 2.如果所有处理器都忙于执行不相关的任务,并行化可能无法实现太多的实际并行性。(无法形成流水线操作)
 *
 * <a href="https://www.jb51.cc/tag/zhichi/" target="_blank">支持</a>序列化,<a href="https://www.jb51.cc/tag/buzhichi/" target="_blank">不支持</a>浅拷贝
 *
 * @since 1.5
 * @author Doug Lea
 * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m <K> the type of keys maintained by this map
 * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m <V> the type of mapped values
 */
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
        implements ConcurrentMap<K,V>,Serializable {
    private static final long serialVersionUID = 7249069246763182397L;

    /*
     * 概述:
     *
     * 这个散列表的主要设计目标是保持并发可读性(通常<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>get(),但也<a href="https://www.jb51.cc/tag/baokuo/" target="_blank">包括</a>迭代器和相关<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>),
     * 同时最小化更新争用。次要目标是保持空间消耗与java.util.HashMap大致相同或更好,并支
     * 持多线程在空表上较高的初始插入速率。
     *
     * 该映射通常用作分箱(分段)散列表。每个键值映射都保存在<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点中。大多数节点是具有散列,
     * 键,值和下<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>字段的基本节点类的实例。但是,存在各种子类:TreeNodes排列在平衡树中,而不是列表。
     * TreeBins拥有TreeNodes集合的根。转发节点在调整大小期间放置在bin的头部。 ReservationNodes用作占位符,
     * 同时在co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>teIfAbsent和其它相关的<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>中中建立值.
     * 类型TreeBin,ForwardingNode和ReservationNode不包含普通的key,value或hash值,并且在<a href="https://www.jb51.cc/tag/sousuo/" target="_blank">搜索</a>期间很容易
     * 区分,因为它们具有负散列字段和空键和值字段。 (这些特殊节点要么不常见,要么是暂时的,所以携带一些未使用的
     * 字段的影响是微不足道的。)
     *
     *
     * 在第一次插入时,table大小被惰性初始化为2的整数次幂。表中的每个bin通常包含<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点列表(通常,列表只有零个或
     * <a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点)。表访问需要volatile/atomic读,写和CAS<a href="https://www.jb51.cc/tag/huoqu/" target="_blank">获取</a>锁。因为在不<a href="https://www.jb51.cc/tag/zengjia/" target="_blank">增加</a>指针的情况这些操作无法实现,
     * 所以我们使用内在<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>(sun.misc.Unsafe)操作。
     *
     * 我们使用节点散列字段的顶部(符号)位来进行控制 -- 由于地址限制,它无论如何都是可用的。具有负散列字段的节点是
     * 被特别处理的,或者map<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>中直接被忽略.
     *
     * 向<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>空bin中插入节点是通过CAS完成的.在大多数key/hash分布中,这是一种很常见的put操作.其它的更新操作
     * (insert,delete,update)都需要锁lock.因为如果每<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>bin都分配<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>单独的lock会比较浪费存储空间,所以改为使用bin列表的
     * 第<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点本身作为锁。对这些锁的锁定<a href="https://www.jb51.cc/tag/zhichi/" target="_blank">支持</a>依赖于内置的“同步”监视器。
     *
     * 但是,使用列表的第<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点作为锁本身并不足以满足:当<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点被锁定时,任何更新都必须首先验证它在锁定之后仍然是第<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点,
     * 如果不是,则重试.因为新节点总是追加到列表尾部,所以一旦节点首先进入<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>容器,它将保持第<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>直到被<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a>或容器变为无效(在调整大小时)。
     *
     * 每个分区都有锁的主要缺点是:由同<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>锁保护的分区列表中的其他节点上的其他更新操作可能会被延迟,比如equals()和映射等相关的<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>执行时,* 会花费很长时间.然而,<a href="https://www.jb51.cc/tag/tongji/" target="_blank">统计</a>上,在<a href="https://www.jb51.cc/tag/suiji/" target="_blank">随机</a>哈希码下,这不是<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>常见问题。理想情况下,给定size的调整阈值为0.75,bin中节点的频率遵循平均
     * 约为0.5的泊松分布,尽管调整size大小时泊松分布方差很大.忽略方差,列表大小k的预期出现是(exp(-0.5)* pow(0.5,k)/ factorial(k))。
     * 第<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>值是:
     * 0:    0.60653066
     * 1:    0.30326533
     * 2:    0.07581633
     * 3:    0.01263606
     * 4:    0.00157952
     * 5:    0.00015795
     * 6:    0.00001316
     * 7:    0.00000094
     * 8:    0.00000006
     * 其它值:只要是在10,000,000范围内,都会小于1.
     *
     * 两个线程访问同<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>bin中不同的元素的锁争用概率为:1 / (8 * #elements)
     *
     * 实际中遇到的哈希码分布有时会明显偏离均匀<a href="https://www.jb51.cc/tag/suiji/" target="_blank">随机</a>性。这<a href="https://www.jb51.cc/tag/baokuo/" target="_blank">包括</a>N>(1 << 30)的情况,所以一些key必然会出现碰撞。
     * 因此,我们使用<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>二级策略,该策略适用于bin中节点数超过阈值的情况。这些TreeBins使用平衡树来保存节点(一种特殊形式的红黑树),
     * 将<a href="https://www.jb51.cc/tag/sousuo/" target="_blank">搜索</a>时间限制在O(log N).TreeBin中的每个<a href="https://www.jb51.cc/tag/sousuo/" target="_blank">搜索</a>步骤至少比常规列表中的<a href="https://www.jb51.cc/tag/sousuo/" target="_blank">搜索</a>步骤慢两倍,但考虑到N不能超过(1 << 64)(在内存地址
     * 用完之前),所以<a href="https://www.jb51.cc/tag/sousuo/" target="_blank">搜索</a>步骤,锁的持有时间等等,都会受到限制,从而<a href="https://www.jb51.cc/tag/sousuo/" target="_blank">搜索</a>节点个数会控制在100个以内.TreeBin节点(TreeNodes)也保持与
     * 常规节点相同的“下<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>”遍历指针,所以可以以相同的方式在迭代器中遍历。
     *
     * 当table中元素个数超过百分比阈值(名义上为0.75,但请参见下文)时,会调整table的大小。
     * 启动线程负责分配并设置替换数组,后续使用这个concurrentHashMap的其它线程在发现元素个数超过<a href="https://www.jb51.cc/tag/fuzai/" target="_blank">负载</a>因子规定大小时,都可以对table进行
     * resize操作.TreeBins的使用保护了我们免于因过度resize带来的最坏影响.
     * resize的过程是将旧table中的每<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>bin都复制到新table的遍历复制过程.然而,线程要求在传输之前通过字段transferIndex传输小块索引,
     * 从而减少争用。字段sizeCtl中的<a href="https://www.jb51.cc/tag/shengcheng/" target="_blank">生成</a>戳记确保重新定位不重叠。因为resize时,按照2的整数次幂进行扩容,所以每<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>bin中的元素到达新的bin
     * 后要么索引不变,要么产生2的次幂的位移.我们通过捕获旧节点可以重用的情况来消除不必要的节点创建,因为它们的下<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>域不会改变.
     * 平均而言,当tableresize时,只有1/6的节点需要进行clone.
     * 被替换掉的节点只要不再被读线程引用,则会被GC回收.
     * 元素都被转移到新table后,旧table的bin中只包含<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>转发节点(其hash域为MOVED),这一节点将新table作为它的key.在遇到转发节点时,查找
     * 和更新操作会转到新table中重新执行.
     *
     * 每<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>bin从旧table到新table的转移都需要<a href="https://www.jb51.cc/tag/huoqu/" target="_blank">获取</a>其bin的锁,这一过程中,可以阻止想要<a href="https://www.jb51.cc/tag/huoqu/" target="_blank">获取</a>这个bin的lock的线程进行等待.
     * 但是其它线程可以加入协助resize的过程(这不是为了<a href="https://www.jb51.cc/tag/huoqu/" target="_blank">获取</a>锁),从而使得平均聚合等待时间变短.
     * 转移还需要保证:无论是新table,还是旧table,只要是可访问的bin,都要保证其能进行遍历.
     * 这部分是通过从最后<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>bin(table.length - 1)开始向第<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>方向进行的。
     * 在遇到转发节点时,遍历会移动到新table而无需重新访问节点。为了保证无序移动时也不跳过中间节点,在遍历期间首次遇到转发节点时会创建<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>
     * 堆栈,以便在稍后处理当前table时保持其位置.对这些保存/恢复机制的需求相对较少,但是当遇到<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>转发节点时,通常会有更多的节点.
     * 所以Traversers使用简单的缓存方案来避免创建这么多新的TableStack节点。
     * 遍历方案也适用于部分遍历bin(通过<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>可选的Traverser构造<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>)来<a href="https://www.jb51.cc/tag/zhichi/" target="_blank">支持</a>分区聚合操作。
     *
     * 用到了表的延迟初始化
     *
     * 元素个数的count值由LongAdder来维护.通过对其特殊设置,避免使用LongAdder来访问导致创建多个CounterCell的隐式竞争检测.
     * 计数器机制避免更新上的争用,但如果在并发访问期间读取频率太高,可能会遇到缓存抖动。为避免频繁读,仅在<a href="https://www.jb51.cc/tag/tianjia/" target="_blank">添加</a>到已拥有两个或更多节点的
     * bin时尝试调整竞争大小。在统一的散列分布下,发生在阈值处的概率约为13%,这意味着只有大约1/8需要检查阈值(并且在调整大小之后,很少这
     * 样做)。
     *
     * TreeBins的<a href="https://www.jb51.cc/tag/chaxun/" target="_blank">查询</a>及与<a href="https://www.jb51.cc/tag/chaxun/" target="_blank">查询</a>相关的操作都使用了一种特殊的比较形式(这也是为什么不能使用现有集合TreeMap的原因).TreeBins中包含的元素可能
     * 在实现Comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>ble上的原则不一样,所以对于它们之<a href="https://www.jb51.cc/tag/jiande/" target="_blank">间的</a>比较,则无法<a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a>Compar<a href="https://www.jb51.cc/tag/eto/" target="_blank">eto</a>()<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>.为了<a href="https://www.jb51.cc/tag/jiejue/" target="_blank">解决</a>这一问题,tree通过hash值对其排序.如果
     * Comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>ble.compar<a href="https://www.jb51.cc/tag/eto/" target="_blank">eto</a> 可用的话,再用这个<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>对元素排序.在查找节点时,如果元素不具有可比性或比较为0,则可能需要对此节点对左右孩子
     * 都进行<a href="https://www.jb51.cc/tag/chaxun/" target="_blank">查询</a>.如果所有元素都不是可比较的并且具有相同的哈希值,则需要对全table进行扫描.
     * 插入节点调整平衡时,为了保证总体有序,我们将类和identityHashCodes作为等同处理.
     * 红黑树调整平衡的算法是对CLR算法的改进.
     *
     * TreeBins也需要额外的锁定机制。list更新过程中依旧可以进行遍历,但是红黑树在更新时却不能进行遍历,因为红黑树的调整可能会改变树的根节点,* 也可能改变各个节点之<a href="https://www.jb51.cc/tag/jiande/" target="_blank">间的</a>连接情况.TreeBins包含<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>简单的读写锁定机制,依赖于主要的同步策略:插入,<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a>的结构调整会<a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a>lock机制;如果
     * 在结构调整前有读操作,则必须读操作完成后,再进行结构的调整操作.由于只可能有<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>waiter,所以可以简单的使用<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>waiter域来阻止所有的写
     * 操作.然后,读操作永远不需要被阻塞.如果保持根锁定,它们沿next指针遍历,直到锁定变为可用或列表遍历完为止.这类情况下并遍历不快,
     * 但是可以最大限度地提高总预期吞吐量.
     *
     * 为了保持与以前的API和序列化兼容,这个类的版本引入了几个特别的<a href="https://www.jb51.cc/tag/neirong/" target="_blank">内容</a>:主要是:保留了构造器参数concurrencyLevel,但并未使用.
     * 我们接受<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>loadFactor构造<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>参数,但只将它应用于初始表容量(这个参数的使用仅此一次).我们还声明了<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>未使用的“Segment”类,
     * 它只在序列化时以最小的形式实例化。
     *
     * 另外,它扩展了AbstractMap,但这只是仅仅为了与这个类的以前版本兼容.
     *
     * ConcurrentHashMap<a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>的组织顺序:
     * 1.主要的静态声明+工具类
     * 2.主要的public<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>
     * 3.扩容<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>,树,遍历器,批量操作.
     */

    /* ---------------- 常量 -------------- */

    /**
     * table的最大容量.
     * 为什么不是1<<32? 因为32位散列字段的前两位用于控制目的.
     * 1<<30=1073741824
     */
    private static final int MAXIMUM_CAPACITY = 1 << 30;

    //<a href="https://www.jb51.cc/tag/mo/" target="_blank">默</a>认容量:16,和HashMap一样.
    private static final int DEFAULT_CAPACITY = 16;

    //数组最大长度,在toArray等相关<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>中用到
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    //<a href="https://www.jb51.cc/tag/mo/" target="_blank">默</a>认并发级别,已经不再使用的字段,之所以还存在只是为了和之前的版本兼容.
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    //此表的加载因子。在构造<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>中重写此值只会影响初始表的容量,而不会使用实际的浮点值.
    private static final float LOAD_FACTOR = 0.75f;

    //<a href="https://www.jb51.cc/tag/tianjia/" target="_blank">添加</a>当前元素,bin中元素个数=8,则链表转为树
    static final int TREEIFY_THRESHOLD = 8;

    //bin中元素个数到达6个,则树转链表
    static final int UNTREEIFY_THRESHOLD = 6;

    //table转为树的阈值:64,此值最小为4*TREEIFY_THRESHOLD,显然,这里设定了64为初始值.
    static final int MIN_TREEIFY_CAPACITY = 64;

    //table扩容时,bin转移个数,最小为<a href="https://www.jb51.cc/tag/mo/" target="_blank">默</a>认的DEFAULT_CAPACITY=16.
    //因为扩容时,可以多个线程同时操作,所以16个bin会被分配给多个的线程进行转移
    private static final int MIN_TRANSFER_STRIDE = 16;

    /**
     * The number of bits used for generation stamp in sizeCtl.
     * Must be at least 6 for 32bit arrays.
     * 用来控制扩容,单线程进入的变量
     * 32位数组时,最小值为6
     */
    private static int RESIZE_STAMP_BITS = 16;

    //resize时的线程最大个数
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;

    /**
     * The bit shift for recording size stamp in sizeCtl.
     * 用来控制扩容,单线程进入的变量
     */
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;

    //节点hash域的编码
    static final int MOVED     = -1; // forwarding nodes的hash值
    static final int TREEBIN   = -2; // roots of trees的hash值
    static final int RESERVED  = -3; // transient reservations的hash值
    static final int HASH_BITS = 0x7fffffff; // 正常散列节点的可用二进制位

    //当前可用<a href="https://www.jb51.cc/tag/cpu/" target="_blank">cpu</a><a href="https://www.jb51.cc/tag/shuliang/" target="_blank">数量</a>
    static final int N<a href="https://www.jb51.cc/tag/cpu/" target="_blank">cpu</a> = Runtime.getRuntime().availableProcessors();

    //用于序列化兼容性
    private static final ObjectStreamField[] serialPersistentFields = {
            new ObjectStreamField("segments",Segment[].class),new ObjectStreamField("segmentMask",Integer.TYPE),new ObjectStreamField("segmentShift",Integer.TYPE)
    };

    /* ---------------- 节点 -------------- */

    /**
     * static内部类:最核心的内部类,包装了key-value条目.
     * 特别注意:
     * 1.<a href="https://www.jb51.cc/tag/buzhichi/" target="_blank">不支持</a>setValue<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>.
     * 2.包含负数哈希值的node子类是特殊的,允许key和value为null.
     * 3.ConcurrentHashMap不允许key和value为null
     */
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        volatile V val;//比hashmap多了关键字volatile
        volatile Node<K,V> next;//比hashmap多了关键字volatile

        Node(int hash,K key,V val,Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.val = val;
            this.next = next;
        }

        public final K getKey()       { return key; }
        public final V getValue()     { return val; }
        //entry的hash值=key和value的hash值求异或,和hashmap相同
        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
        public final String toString(){ return key + "=" + val; }
        //本<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>不被<a href="https://www.jb51.cc/tag/zhichi/" target="_blank">支持</a>
        public final V setValue(V value) {
            throw new UnsupportedOperationException();
        }

        /**
         * 检查步骤:
         * 1.是Map.Entry类型
         * 2.key和value都等价
         */
        public final boolean equals(Object o) {
            Object k,v,u; Map.Entry<?,?> e;
            return ((o instanceof Map.Entry) &amp;&amp;
                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &amp;&amp;
                    (v = e.getValue()) != null &amp;&amp;
                    (k == key || k.equals(key)) &amp;&amp;
                    (v == (u = val) || v.equals(u)));
        }

        //虚拟化<a href="https://www.jb51.cc/tag/zhichi/" target="_blank">支持</a>map.get();在子类中被覆盖。
        Node<K,V> find(int h,Object k) {
            Node<K,V> e = this;
            if (k != null) {
                do {
                    K ek;
                    if (e.hash == h &amp;&amp;
                            ((ek = e.key) == k || (ek != null &amp;&amp; k.equals(ek))))
                        return e;
                } while ((e = e.next) != null);
            }
            return null;
        }
    }

    /* ---------------- 静态工具 -------------- */

    /**
     * hash值无符号右移16位原因:
     * 因为table使用的是2的整数次幂的掩码,仅在当前掩码之上的位上变化的散列集将会总是碰撞。(比如,Float键的集合在小table中保持连续的整数)
     * 所以我们应用<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>转换,将高位的影响向下扩展。这是在速度,<a href="https://www.jb51.cc/tag/xingneng/" target="_blank">性能</a>,分布上做的<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>平衡.
     * 因为许多常见的哈希集合已经合理分布(它们就不会在spread机制中受益)
     * 因为我们已经使用了红黑树对bin中的大量碰撞做了处理,因此我们只是以最简单的方式做一些移位,然后进行异或运算,
     * 以减少系统损失,并合并由于表边界而不会用于索引计算的最高位的影响(也就是&amp;运算)。
     *
     */
    static final int spread(int h) {
        return (h ^ (h >>> 16)) &amp; HASH_BITS;//消除异或结果的最高位影响
    }

    /**
     * 如果c为2的整数次幂,则返回c;
     * 如果c不是2的整数次幂,则返回第<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>比c大的2的整数次幂;
     * eg:c=16,则返回结果为16;
     *    c=30,则返回结果为32;
     */
    private static final int tableSi<a href="https://www.jb51.cc/tag/zef/" target="_blank">zef</a>or(int c) {
        int n = c - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    //如果传入参数x实现了Comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>ble接口,则返回类x,否则返回null.同HashMap
    static Class<?> comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>bleClassFor(Object x) {
        if (x instanceof <a href="https://www.jb51.cc/tag/javalang/" target="_blank">java.lang</a>.Comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>ble) {
            Class<?> c; Type[] ts,as; Type t; P<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>meterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof P<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>meterizedType) &amp;&amp;
                            ((p = (P<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>meterizedType)t).getRawType() ==
                                    <a href="https://www.jb51.cc/tag/javalang/" target="_blank">java.lang</a>.Comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>ble.class) &amp;&amp;
                            (as = p.getActualTypeArguments()) != null &amp;&amp;
                            as.length == 1 &amp;&amp; as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    //如果x和kc类型相同,则返回k.compar<a href="https://www.jb51.cc/tag/eto/" target="_blank">eto</a>(x)结果;否则返回0.同HashMap
    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>ble
    static int compareComp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>bles(Class<?> kc,Object k,Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((<a href="https://www.jb51.cc/tag/javalang/" target="_blank">java.lang</a>.Comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>ble)k).compar<a href="https://www.jb51.cc/tag/eto/" target="_blank">eto</a>(x));
    }

    /* ---------------- 访问table元素<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a> -------------- */

    /*
     * 下面3个<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>,都是属于volatile类型的<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>,所以即使在resize的过程中,访问对table中的元素<a href="https://www.jb51.cc/tag/huoqu/" target="_blank">获取</a>的结果也是正确的.
     * 针对tab参数,必须有非null判定.然后判定tab的长度是否>0,最后判定索引i是否合法.
     * 注意:为了纠正<a href="https://www.jb51.cc/tag/yonghu/" target="_blank">用户</a>发生的任意并发<a href="https://www.jb51.cc/tag/cuowu/" target="_blank">错误</a>,这些检查必须对局部变量进行操作,这些检查必须对本地变量进行操作,这些变量占了下面一些特别的内联分配。
     * 注意:对setTabAt()<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>的<a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a>总是发生在lock区域内,所以原则上不需要完整的volatile语义,但是目前的<a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>还是保守地选择了volatile方式.
     */

    @SuppressWarnings("unchecked")
    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab,int i) {
        return (Node<K,V>)U.g<a href="https://www.jb51.cc/tag/eto/" target="_blank">eto</a>bjectVolatile(tab,((long)i << ASHIFT) + ABASE);
    }

    static final <K,V> boolean casTabAt(Node<K,int i,V> c,V> v) {
        return U.compareAndSwapObject(tab,((long)i << ASHIFT) + ABASE,c,v);
    }

    static final <K,V> void setTabAt(Node<K,V> v) {
        U.putObjectVolatile(tab,v);
    }

    /* ---------------- 域 -------------- */

    /**
     * bin数组
     * 延迟初始化到第一次插入元素.
     * 数组长度总是2的整数次幂.
     * 可以通过迭代器进行访问.
     */
    transient volatile Node<K,V>[] table;

    //resize时用到的临时table,只有在resize时,才不为null
    private transient volatile Node<K,V>[] nextTable;

    //基本计数器值,主要用于没有争用时,也可作为表初始化期<a href="https://www.jb51.cc/tag/jiande/" target="_blank">间的</a>后备。通过CAS更新。
    private transient volatile long baseCount;

    /**
     * 用于控制table初始化和resize的<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>变量.
     * 值为负数:table正在初始化or正在resize
     * sizeCtl=-1:正在初始化;
     * sizeCtl=-(1+n):当前有n个线程<a href="https://www.jb51.cc/tag/zhengzaijinxing/" target="_blank">正在进行</a>resize;
     * 当table未初始化时,保存创建时使用的初始表大小,或<a href="https://www.jb51.cc/tag/mo/" target="_blank">默</a>认为0。初始化后,保存下<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>要调整table大小的元素计数值。
     */
    private transient volatile int sizeCtl;

    //resize时,next table的索引+1,用于分割.
    //nexttable索引[0,2*n-1],故transferIndex=n
    private transient volatile int transferIndex;

    //在调整大小和/或创建CounterCells时使用的自旋锁(通过CAS锁定)。
    private transient volatile int cellsBusy;

    //这是<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>计数器数组,用于保存每个bin中节点个数.
    private transient volatile CounterCell[] counterCells;

    //视图views
    private transient KeySetView<K,V> keySet;
    private transient ValuesView<K,V> values;
    private transient EntrySetView<K,V> entrySet;


    /* ---------------- Public操作 -------------- */

    /*-------------4个构造<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>-----------*/

    //table<a href="https://www.jb51.cc/tag/mo/" target="_blank">默</a>认大小16
    public ConcurrentHashMap() {
    }

    //初始化容量为:>=1.5*initialCapacity+1的最小2的整数次幂
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                MAXIMUM_CAPACITY :
                tableSi<a href="https://www.jb51.cc/tag/zef/" target="_blank">zef</a>or(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }

    //创建<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>和输入参数map映射一样的map
    public ConcurrentHashMap(Map<? extends K,? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }

    public ConcurrentHashMap(int initialCapacity,float loadFactor) {
        this(initialCapacity,loadFactor,1);
    }

    public ConcurrentHashMap(int initialCapacity,float loadFactor,int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new Ille<a href="https://www.jb51.cc/tag/gal/" target="_blank">gal</a>ArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        //如果initialCapacity=16,则cap=32;
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
                MAXIMUM_CAPACITY : tableSi<a href="https://www.jb51.cc/tag/zef/" target="_blank">zef</a>or((int)size);
        this.sizeCtl = cap;
}

    // Original (since JDK1.2) Map methods

    public int size() {
        //节点总数n
        long n = sumCount();
        return ((n < 0L) ? 0 :
                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                        (int)n);
    }

    public boolean isEmpty() {
        return sumCount() <= 0L; // ig<a href="https://www.jb51.cc/tag/nor/" target="_blank">nor</a>e transient negative values
    }

    public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e,p; int n,eh; K ek;
        //根据hash值查找散列位置
        int h = spread(key.hashCode());
        if ((tab = table) != null &amp;&amp; (n = tab.length) > 0 &amp;&amp;
                (e = tabAt(tab,(n - 1) &amp; h)) != null) {
            //如果tab[(n-1)&amp;h]处的节点就是要查找的节点
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null &amp;&amp; key.equals(ek)))
                    return e.val;
            }
            //如果是树节点
            else if (eh < 0)
                return (p = e.find(h,key)) != null ? p.val : null;
            //如果是链表节点
            while ((e = e.next) != null) {
                if (e.hash == h &amp;&amp;
                        ((ek = e.key) == key || (ek != null &amp;&amp; key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }

    //<a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a>上面的<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>
    public boolean containsKey(Object key) {
        return get(key) != null;
    }


    public boolean containsValue(Object value) {
        if (value == null)
            throw new NullPointerException();
        Node<K,V>[] t;
        if ((t = table) != null) {
            Traverser<K,V> it = new Traverser<K,V>(t,t.length,t.length);
            for (Node<K,V> p; (p = it.advance()) != null; ) {
                V v;
                if ((v = p.val) == value || (v != null &amp;&amp; value.equals(v)))
                    return true;
            }
        }
        return false;
    }

    //key,value不能为null
    public V put(K key,V value) {
        return putVal(key,value,false);
    }

    /** Implementation for put and putIfAbsent
     * 总体步骤:
     * 1.判定key,value合法性
     * 2.插入位置为空bin
     * 3.插入位置<a href="https://www.jb51.cc/tag/zhengzaijinxing/" target="_blank">正在进行</a>resize
     * 4.插入位置在table中,且该位置未进行resize
     * 5.插入完成后,判定bin中节点个数是否>=8,从而决定是否进行链表转红黑树.
     *
     */
    final V putVal(K key,V value,boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        //<a href="https://www.jb51.cc/tag/huoqu/" target="_blank">获取</a>hash值
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n,i,fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            //如果插入位置为空的bin
            else if ((f = tabAt(tab,i = (n - 1) &amp; hash)) == null) {
                if (casTabAt(tab,null,new Node<K,V>(hash,key,null)))
                    break;                   // no lock when adding to empty bin
            }
            //如果查找位置为forwarding node
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab,f);
            //在当前table中查找插入位置
            else {
                V oldVal = null;
                //同步<a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>块,保证插入安全
                synchronized (f) {
                    if (tabAt(tab,i) == f) {
                        //如果为链表
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                //找到,更新值
                                if (e.hash == hash &amp;&amp;
                                        ((ek = e.key) == key ||
                                                (ek != null &amp;&amp; key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,null);
                                    break;
                                }
                            }
                        }
                        //如果为红黑树
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash,value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                //插入节点后,检查bin中节点个数是否>=8,如果大于,则由链表转为红黑树
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab,i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L,binCount);
        return null;
    }


    public void putAll(Map<? extends K,? extends V> m) {
        //对table的size进行设置,使得其可以容纳新加入的元素.
        tryPresize(m.size());
        for (Map.Entry<? extends K,? extends V> e : m.entrySet())
            putVal(e.getKey(),e.getValue(),false);
    }

    public V remove(Object key) {
        return replaceNode(key,null);
    }

    //此<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>是对4个公有<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>remove/replace的辅助<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>.
    final V replaceNode(Object key,Object cv) {
        int hash = spread(key.hashCode());
        for (Node<K,fh;
            //空表or查找位置bin为null
            if (tab == null || (n = tab.length) == 0 ||
                    (f = tabAt(tab,i = (n - 1) &amp; hash)) == null)
                break;
            //如果查找节点为转移节点forwarding node
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab,f);
            else {
                V oldVal = null;
                boolean validated = false;
                //同步代码块,保证删除安全性
                synchronized (f) {
                    if (tabAt(tab,i) == f) {
                        //bin为链表结构
                        if (fh >= 0) {
                            validated = true;
                            for (Node<K,V> e = f,pred = null;;) {
                                K ek;
                                if (e.hash == hash &amp;&amp;
                                        ((ek = e.key) == key ||
                                                (ek != null &amp;&amp; key.equals(ek)))) {
                                    V ev = e.val;
                                    if (cv == null || cv == ev ||
                                            (ev != null &amp;&amp; cv.equals(ev))) {
                                        oldVal = ev;
                                        if (value != null)
                                            e.val = value;
                                        else if (pred != null)
                                            pred.next = e.next;
                                        else
                                            setTabAt(tab,e.next);
                                    }
                                    break;
                                }
                                //记录上<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>访问节点
                                pred = e;
                                //更新e为下<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点
                                if ((e = e.next) == null)
                                    break;
                            }
                        }
                        //bin为红黑树结构
                        else if (f instanceof TreeBin) {
                            validated = true;
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> r,p;
                            if ((r = t.root) != null &amp;&amp;
                                    (p = r.findTreeNode(hash,null)) != null) {
                                V pv = p.val;
                                if (cv == null || cv == pv ||
                                        (pv != null &amp;&amp; cv.equals(pv))) {
                                    oldVal = pv;
                                    if (value != null)
                                        p.val = value;
                                    else if (t.removeTreeNode(p))
                                        setTabAt(tab,untreeify(t.f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t));
                                }
                            }
                        }
                    }
                }
                if (validated) {
                    if (oldVal != null) {
                        if (value == null)
                            //更新节点个数
                            addCount(-1L,-1);
                        return oldVal;
                    }
                    break;
                }
            }
        }
        return null;
    }

    public void clear() {
        long delta = 0L; // negative number of deletions
        int i = 0;
        Node<K,V>[] tab = table;
        while (tab != null &amp;&amp; i < tab.length) {
            int fh;
            Node<K,V> f = tabAt(tab,i);
            if (f == null)
                ++i;
            //如果节点为转移节点forwarding node
            else if ((fh = f.hash) == MOVED) {
                tab = helpTransfer(tab,f);
                i = 0; // restart
            }
            else {
                //同步<a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>块,<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a>i位置处的节点
                synchronized (f) {
                    if (tabAt(tab,i) == f) {
                        Node<K,V> p = (fh >= 0 ? f :
                                (f instanceof TreeBin) ?
                                        ((TreeBin<K,V>)f).f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t : null);
                        while (p != null) {
                            --delta;
                            p = p.next;
                        }
                        setTabAt(tab,i++,null);
                    }
                }
            }
        }
        if (delta != 0L)
            addCount(delta,-1);
    }


    public KeySetView<K,V> keySet() {
        KeySetView<K,V> ks;
        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this,null));
    }

    public Collection<V> values() {
        ValuesView<K,V> vs;
        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
    }

    public Set<Map.Entry<K,V>> entrySet() {
        EntrySetView<K,V> es;
        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
    }

    //返回map的hash值.
    //结果=sum(key.hashCode() ^ value.hashCode())
    public int hashCode() {
        int h = 0;
        Node<K,V> p; (p = it.advance()) != null; )
                h += p.key.hashCode() ^ p.val.hashCode();
        }
        return h;
    }

    //格式:{key1=value1,key2=value2,...}
    public String toString() {
        Node<K,V>[] t;
        int f = (t = table) == null ? 0 : t.length;
        Traverser<K,f,f);
        StringBuilder sb = new StringBuilder();
        sb.append('{');
        Node<K,V> p;
        if ((p = it.advance()) != null) {
            for (;;) {
                K k = p.key;
                V v = p.val;
                sb.append(k == this ? "(this Map)" : k);
                sb.append('=');
                sb.append(v == this ? "(this Map)" : v);
                if ((p = it.advance()) == null)
                    break;
                sb.append(',').append(' ');
            }
        }
        return sb.append('}').toString();
    }

    /**
     * Compares the specified object with this map for equality.
     * Returns {@code true} if the given object is a map with the same
     * mappings as this map.  This operation may return misleading
     * results if either map is concurrently modified during execution
     * of this method.
     *
     * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m o object to be compared for equality with this map
     * @return {@code true} if the specified object is equal to this map
     */
    public boolean equals(Object o) {
        //内存地址是否相同
        if (o != this) {
            //是否为map类型
            if (!(o instanceof Map))
                return false;
            //类型转化
            Map<?,?> m = (Map<?,?>) o;
            Node<K,V>[] t;
            //记录table长度
            int f = (t = table) == null ? 0 : t.length;
            Traverser<K,f);
            //遍历table,检查和o的value一致性
            for (Node<K,V> p; (p = it.advance()) != null; ) {
                V val = p.val;
                Object v = m.get(p.key);
                if (v == null || (v != val &amp;&amp; !v.equals(val)))
                    return false;
            }
            //遍历o,检查自身key和value的合法性
            for (Map.Entry<?,?> e : m.entrySet()) {
                Object mk,mv,v;
                if ((mk = e.getKey()) == null ||
                        (mv = e.getValue()) == null ||
                        (v = get(mk)) == null ||
                        (mv != v &amp;&amp; !mv.equals(v)))
                    return false;
            }
        }
        return true;
    }


    //旧版本中使用的类,存在的意义:序列化兼容性
    static class Segment<K,V> extends <a href="https://www.jb51.cc/tag/reentrantlock/" target="_blank">reentrantlock</a> implements Serializable {
        private static final long serialVersionUID = 2249069246763182397L;
        final float loadFactor;
        Segment(float lf) { this.loadFactor = lf; }
    }

    //用于序列化:将concurrenthashmap写入stream中.
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
        // 用于序列化版本兼容
        // Emulate segment cal<a href="https://www.jb51.cc/tag/cula/" target="_blank">cula</a>tion from prev<a href="https://www.jb51.cc/tag/IoU/" target="_blank">IoU</a>s version of this class
        int sshift = 0;
        int ssize = 1;
        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
            ++sshift;
            ssize <<= 1;
        }
        int segmentShift = 32 - sshift;
        int segmentMask = ssize - 1;
        @SuppressWarnings("unchecked")
        Segment<K,V>[] segments = (Segment<K,V>[])
                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
        for (int i = 0; i < segments.length; ++i)
            segments[i] = new Segment<K,V>(LOAD_FACTOR);
        s.putFields().put("segments",segments);
        s.putFields().put("segmentShift",segmentShift);
        s.putFields().put("segmentMask",segmentMask);
        s.writeFields();

        Node<K,V> p; (p = it.advance()) != null; ) {
                s.writeObject(p.key);
                s.writeObject(p.val);
            }
        }
        s.writeObject(null);
        s.writeObject(null);
        segments = null; // throw away
    }


    private void rea<a href="https://www.jb51.cc/tag/dob/" target="_blank">dob</a>ject(java.io.ObjectInputStream s)
            throws java.io.IOException,ClassNotFoundException {
        /*
         * 为了在典型情况下提高<a href="https://www.jb51.cc/tag/xingneng/" target="_blank">性能</a>,我们在读取时创建节点,然后在知道大小后放置在表中.
         * 但是,我们还必须验证唯一性并处理过多的bin,这需要putVal机制的专用版本
         */
        sizeCtl = -1; // force exclusion for table construction
        s.defaultRea<a href="https://www.jb51.cc/tag/dob/" target="_blank">dob</a>ject();
        long size = 0L;
        Node<K,V> p = null;
        for (;;) {
            @SuppressWarnings("unchecked")
            K k = (K) s.rea<a href="https://www.jb51.cc/tag/dob/" target="_blank">dob</a>ject();
            @SuppressWarnings("unchecked")
            V v = (V) s.rea<a href="https://www.jb51.cc/tag/dob/" target="_blank">dob</a>ject();
            if (k != null &amp;&amp; v != null) {
                p = new Node<K,V>(spread(k.hashCode()),k,p);
                ++size;
            }
            else
                break;
        }
        if (size == 0L)
            sizeCtl = 0;
        else {
            int n;
            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
                n = MAXIMUM_CAPACITY;
            else {
                int sz = (int)size;
                n = tableSi<a href="https://www.jb51.cc/tag/zef/" target="_blank">zef</a>or(sz + (sz >>> 1) + 1);
            }
            @SuppressWarnings("unchecked")
            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
            int mask = n - 1;
            long added = 0L;
            while (p != null) {
                boolean insertAtFront;
                Node<K,V> next = p.next,f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t;
                int h = p.hash,j = h &amp; mask;
                if ((f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t = tabAt(tab,j)) == null)
                    insertAtFront = true;
                else {
                    K k = p.key;
                    if (f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t.hash < 0) {
                        TreeBin<K,V>)f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t;
                        if (t.putTreeVal(h,p.val) == null)
                            ++added;
                        insertAtFront = false;
                    }
                    else {
                        int binCount = 0;
                        insertAtFront = true;
                        Node<K,V> q; K qk;
                        for (q = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t; q != null; q = q.next) {
                            if (q.hash == h &amp;&amp;
                                    ((qk = q.key) == k ||
                                            (qk != null &amp;&amp; k.equals(qk)))) {
                                insertAtFront = false;
                                break;
                            }
                            ++binCount;
                        }
                        if (insertAtFront &amp;&amp; binCount >= TREEIFY_THRESHOLD) {
                            insertAtFront = false;
                            ++added;
                            p.next = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t;
                            TreeNode<K,V> hd = null,tl = null;
                            for (q = p; q != null; q = q.next) {
                                TreeNode<K,V> t = new TreeNode<K,V>
                                        (q.hash,q.key,q.val,null);
                                if ((t.prev = tl) == null)
                                    hd = t;
                                else
                                    tl.next = t;
                                tl = t;
                            }
                            setTabAt(tab,j,new TreeBin<K,V>(hd));
                        }
                    }
                }
                if (insertAtFront) {
                    ++added;
                    p.next = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t;
                    setTabAt(tab,p);
                }
                p = next;
            }
            table = tab;
            sizeCtl = n - (n >>> 2);
            baseCount = added;
        }
    }

    /*-------ConcurrentMap<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>---------*/

    //存在,替换,返回旧value;否则不操作,返回null
    public V putIfAbsent(K key,true);
    }


    public boolean remove(Object key,Object value) {
        if (key == null)
            throw new NullPointerException();
        return value != null &amp;&amp; replaceNode(key,value) != null;
    }

    public boolean replace(K key,V oldValue,V newValue) {
        if (key == null || oldValue == null || newValue == null)
            throw new NullPointerException();
        return replaceNode(key,newValue,oldValue) != null;
    }

    public V replace(K key,V value) {
        if (key == null || value == null)
            throw new NullPointerException();
        return replaceNode(key,null);
    }

    /*--------Overrides在JDK8中Map接口扩展的<a href="https://www.jb51.cc/tag/mo/" target="_blank">默</a>认<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>--------*/

    //key有value,则返回value;
    //否则返回参数值
    public V g<a href="https://www.jb51.cc/tag/eto/" target="_blank">eto</a>rDefault(Object key,V defaultValue) {
        V v;
        return (v = get(key)) == null ? defaultValue : v;
    }

    public void forEach(BiConsumer<? super K,? super V> action) {
        if (action == null) throw new NullPointerException();
        Node<K,V> p; (p = it.advance()) != null; ) {
                action.accept(p.key,p.val);
            }
        }
    }

    public void replaceAll(BiFunction<? super K,? super V,? extends V> function) {
        if (function == null) throw new NullPointerException();
        Node<K,V> p; (p = it.advance()) != null; ) {
                V oldValue = p.val;
                for (K key = p.key;;) {
                    V newValue = function.apply(key,oldValue);
                    if (newValue == null)
                        throw new NullPointerException();
                    if (replaceNode(key,oldValue) != null ||
                            (oldValue = get(key)) == null)
                        break;
                }
            }
        }
    }

    /**
     * 如果指定的键尚未与值关联,则尝试使用给定的映射<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>计算其值,并将其输入到该映射中,除非是null.
     * 整个<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a><a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a>是以原子方式执行的,因此每个键最多应用一次该<a href="https://www.jb51.cc/tag/gongneng/" target="_blank">功能</a>。
     * 在进行计算时,其他线程在此映射上的某些尝试更新操作可能会被阻止,因此计算应该简短并且不要尝试更新此map中的任何其他映射。
     */
    public V co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>teIfAbsent(K key,Function<? super K,? extends V> mappingFunction) {
        if (key == null || mappingFunction == null)
            throw new NullPointerException();
        int h = spread(key.hashCode());
        V val = null;
        int binCount = 0;
        for (Node<K,fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            //不存在
            else if ((f = tabAt(tab,i = (n - 1) &amp; h)) == null) {
                Node<K,V> r = new ReservationNode<K,V>();
                //同步<a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>块,计算新值并插入map
                synchronized (r) {
                    if (casTabAt(tab,r)) {
                        binCount = 1;
                        Node<K,V> node = null;
                        try {
                            if ((val = mappingFunction.apply(key)) != null)
                                node = new Node<K,V>(h,val,null);
                        } finally {
                            setTabAt(tab,node);
                        }
                    }
                }
                if (binCount != 0)
                    break;
            }
            //此节点为转移节点forwarding node
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab,f);
            //存在,且不是转移节点
            else {
                boolean added = false;
                //同步<a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>块:分链表和红黑树两种情况进行插入
                synchronized (f) {
                    if (tabAt(tab,i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek; V ev;
                                if (e.hash == h &amp;&amp;
                                        ((ek = e.key) == key ||
                                                (ek != null &amp;&amp; key.equals(ek)))) {
                                    val = e.val;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    if ((val = mappingFunction.apply(key)) != null) {
                                        added = true;
                                        pred.next = new Node<K,null);
                                    }
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            binCount = 2;
                            TreeBin<K,p;
                            if ((r = t.root) != null &amp;&amp;
                                    (p = r.findTreeNode(h,null)) != null)
                                val = p.val;
                            else if ((val = mappingFunction.apply(key)) != null) {
                                added = true;
                                t.putTreeVal(h,val);
                            }
                        }
                    }
                }
                //插入后,判定是否需要将链表转为红黑树
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab,i);
                    if (!added)
                        return val;
                    break;
                }
            }
        }
        //<a href="https://www.jb51.cc/tag/zengjia/" target="_blank">增加</a>节点个数
        if (val != null)
            addCount(1L,binCount);
        return val;
    }

    /**
     * 如果指定的键尚已经与值关联,则尝试使用给定的映射<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>计算其值,并更改该映射.
     * 整个<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a><a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a>是以原子方式执行的,因此每个键最多应用一次该<a href="https://www.jb51.cc/tag/gongneng/" target="_blank">功能</a>。
     * 在进行计算时,其他线程在此映射上的某些尝试更新操作可能会被阻止,因此计算应该简短并且不要尝试更新此map中的任何其他映射。
     */
    public V co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>teIfPresent(K key,BiFunction<? super K,? extends V> remappingFunction) {
        if (key == null || remappingFunction == null)
            throw new NullPointerException();
        int h = spread(key.hashCode());
        V val = null;
        int delta = 0;
        int binCount = 0;
        for (Node<K,fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            //如果为null,返回
            else if ((f = tabAt(tab,i = (n - 1) &amp; h)) == null)
                break;
            //如果为转移节点,帮助转移
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab,f);
            //计算值并替换
            else {
                //同步<a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>块,分链表和红黑树节点讨论插入.
                synchronized (f) {
                    if (tabAt(tab,pred = null;; ++binCount) {
                                K ek;
                                if (e.hash == h &amp;&amp;
                                        ((ek = e.key) == key ||
                                                (ek != null &amp;&amp; key.equals(ek)))) {
                                    val = remappingFunction.apply(key,e.val);
                                    if (val != null)
                                        e.val = val;
                                    else {
                                        delta = -1;
                                        Node<K,V> en = e.next;
                                        if (pred != null)
                                            pred.next = en;
                                        else
                                            setTabAt(tab,en);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null)
                                    break;
                            }
                        }
                        else if (f instanceof TreeBin) {
                            binCount = 2;
                            TreeBin<K,null)) != null) {
                                val = remappingFunction.apply(key,p.val);
                                if (val != null)
                                    p.val = val;
                                else {
                                    delta = -1;
                                    if (t.removeTreeNode(p))
                                        setTabAt(tab,untreeify(t.first));
                                }
                            }
                        }
                    }
                }
                if (binCount != 0)
                    break;
            }
        }
        if (delta != 0)
            addCount((long)delta,binCount);
        return val;
    }

    //指定key如果没有value,则为其计算一个value
    public V compute(K key,fh;
            //如果表为null,则初始化表
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            //如果指定位置为null
            else if ((f = tabAt(tab,V>();
                //同步<a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>块:为其计算值,并插入map
                synchronized (r) {
                    if (casTabAt(tab,V> node = null;
                        try {
                            if ((val = remappingFunction.apply(key,null)) != null) {
                                delta = 1;
                                node = new Node<K,null);
                            }
                        } finally {
                            //插入map
                            setTabAt(tab,node);
                        }
                    }
                }
                if (binCount != 0)
                    break;
            }
            //如果指定位置为转移节点,当前线程转去帮忙转移节点
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab,f);
            //同步代码块
            else {
                synchronized (f) {
                    if (tabAt(tab,i) == f) {
                        //链表节点
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,e.val);
                                    //计算的value不为null,更改原value
                                    if (val != null)
                                        e.val = val;
                                    //计算的value为null
                                    else {
                                        delta = -1;
                                        Node<K,V> en = e.next;
                                        //上<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点为为null,<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a>当前节点
                                        if (pred != null)
                                            pred.next = en;
                                        //上<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点为null
                                        else
                                            setTabAt(tab,en);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null) {
                                    val = remappingFunction.apply(key,null);
                                    if (val != null) {
                                        delta = 1;
                                        pred.next =
                                                new Node<K,null);
                                    }
                                    break;
                                }
                            }
                        }
                        //红黑树树节点
                        else if (f instanceof TreeBin) {
                            binCount = 1;
                            TreeBin<K,p;
                            if ((r = t.root) != null)
                                p = r.findTreeNode(h,null);
                            else
                                p = null;
                            V pv = (p == null) ? null : p.val;
                            val = remappingFunction.apply(key,pv);
                            if (val != null) {
                                if (p != null)
                                    p.val = val;
                                else {
                                    delta = 1;
                                    t.putTreeVal(h,val);
                                }
                            }
                            else if (p != null) {
                                delta = -1;
                                if (t.removeTreeNode(p))
                                    setTabAt(tab,untreeify(t.first));
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab,i);
                    break;
                }
            }
        }
        if (delta != 0)
            addCount((long)delta,binCount);
        return val;
    }

    /**
     * 如果指定的键尚未与(非空)值相关联,则将其与给定值value相关联。
     * 否则,将该值替换为给定的重映射<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>的结果,或者如果为null则被移除.
     * 整个<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a><a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a>是以原子方式执行的。其他线程在此映射上的某些尝试更新操作可能会被阻止当计算<a href="https://www.jb51.cc/tag/zhengzaijinxing/" target="_blank">正在进行</a>时,所以计算应该简短,
     * 并且不能尝试更新此Map的任何其他映射。
     */
    public V merge(K key,BiFunction<? super V,? extends V> remappingFunction) {
        if (key == null || value == null || remappingFunction == null)
            throw new NullPointerException();
        int h = spread(key.hashCode());
        V val = null;
        int delta = 0;
        int binCount = 0;
        for (Node<K,fh;
            //如果tab为null,初始化table
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            //如果该散列位置没有元素,为null
            else if ((f = tabAt(tab,i = (n - 1) &amp; h)) == null) {
                //利用CAS为索引i处节点赋值
                if (casTabAt(tab,null))) {
                    delta = 1;
                    val = value;
                    break;
                }
            }
            //如果table在进行resize,则当前线程帮忙去resize
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab,f);
            //如果散列位置有数值
            else {
                //同步代码块:
                synchronized (f) {
                    //查找i处的节点
                    if (tabAt(tab,i) == f) {
                        //如果为链表节点
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,pred = null;; ++binCount) {
                                K ek;
                                if (e.hash == h &amp;&amp;
                                        ((ek = e.key) == key ||
                                                (ek != null &amp;&amp; key.equals(ek)))) {
                                    val = remappingFunction.apply(e.val,value);
                                    if (val != null)
                                        e.val = val;
                                    else {
                                        delta = -1;
                                        Node<K,V> en = e.next;
                                        if (pred != null)
                                            pred.next = en;
                                        //原value=新value=null,则<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a>当前节点
                                        else
                                            setTabAt(tab,en);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null) {
                                    delta = 1;
                                    val = value;
                                    pred.next =
                                            new Node<K,null);
                                    break;
                                }
                            }
                        }
                        //如果节点为红黑树节点
                        else if (f instanceof TreeBin) {
                            binCount = 2;
                            TreeBin<K,V> r = t.root;
                            TreeNode<K,V> p = (r == null) ? null :
                                    r.findTreeNode(h,null);
                            val = (p == null) ? value :
                                    remappingFunction.apply(p.val,value);
                            if (val != null) {
                                if (p != null)
                                    p.val = val;
                                else {
                                    delta = 1;
                                    t.putTreeVal(h,binCount);
        return val;
    }

    /*-----------Hashtable的传统<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>------------*/

    //此<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>在<a href="https://www.jb51.cc/tag/gongneng/" target="_blank">功能</a>上与containsValue(Object)完全相同
    public boolean contains(Object value) {
        return containsValue(value);
    }

    //返回key的枚举
    public Enumeration<K> keys() {
        Node<K,V>[] t;
        int f = (t = table) == null ? 0 : t.length;
        return new KeyI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,this);
    }

    //返回value的枚举
    public Enumeration<V> elements() {
        Node<K,V>[] t;
        int f = (t = table) == null ? 0 : t.length;
        return new ValueI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,this);
    }

    /*-----------ConcurrentHashMap-only methods------独有<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>------------*/

    /**
     * 返回映射的<a href="https://www.jb51.cc/tag/shuliang/" target="_blank">数量</a>。
     * 求映射个数时,应该使用此<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>而不是size()<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>,因为ConcurrentHashMap包含映射个数可以比Integer.MAX_VALUE更多。
     * 注意:本<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>返回的值是<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>估计值;如果并发插入或<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a>,实际计数可能会有所不同。
     * @return the number of mappings
     * @since 1.8
     */
    public long mappingCount() {
        long n = sumCount();
        return (n < 0L) ? 0L : n; // ig<a href="https://www.jb51.cc/tag/nor/" target="_blank">nor</a>e transient negative values
    }

    /**
     * 根据给定类型Boolean.TRUE,新建<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>Set,当然这个set也是由ConcurrentHashMap作为后备支撑的
     * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m <K> the element type of the returned set
     * @return the new set
     * @since 1.8
     */
    public static <K> KeySetView<K,Boolean> newKeySet() {
        return new KeySetView<K,Boolean>
                (new ConcurrentHashMap<K,Boolean>(),Boolean.TRUE);
    }

    /**
     * @since 1.8
     */
    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
        return new KeySetView<K,Boolean>(initialCapacity),Boolean.TRUE);
    }

    //根据给定的通用value,在add,addAll<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>中可以随意<a href="https://www.jb51.cc/tag/tianjia/" target="_blank">添加</a>值.这当然只适用于从该视图中为所有<a href="https://www.jb51.cc/tag/tianjia/" target="_blank">添加</a>使用相同值的情况。
    public KeySetView<K,V> keySet(V mappedValue) {
        if (mappedValue == null)
            throw new NullPointerException();
        return new KeySetView<K,mappedValue);
    }

    /* ---------------- Special Nodes 特殊节点 -------------- */


    /**
     * <a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>用于连接两个table的节点类。它包含<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>nextTable指针,用于指向下一张表。而且这个节点的key,next指针全部为null,
     * 它的hash值为-1. 这里面定义的find的<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>是从nextTable里进行<a href="https://www.jb51.cc/tag/chaxun/" target="_blank">查询</a>节点,而不是以自身为头节点进行查找
     */
    static final class ForwardingNode<K,V> extends Node<K,V> {
        final Node<K,V>[] nextTable;
        ForwardingNode(Node<K,V>[] tab) {
            //hash值=MOVED=-1
            super(MOVED,null);
            this.nextTable = tab;
        }

        Node<K,Object k) {
            // loop to avoid arbitrarily deep recursion on forwarding nodes
            //循环以避免转发节点上的任意深度递归
            outer: for (Node<K,V>[] tab = nextTable;;) {
                Node<K,V> e; int n;
                //如果table为null,or长度为0,or指定bin无元素
                if (k == null || tab == null || (n = tab.length) == 0 ||
                        (e = tabAt(tab,(n - 1) &amp; h)) == null)
                    return null;
                //循环
                for (;;) {
                    int eh; K ek;
                    if ((eh = e.hash) == h &amp;&amp;
                            ((ek = e.key) == k || (ek != null &amp;&amp; k.equals(ek))))
                        return e;
                    //哈希值<0
                    if (eh < 0) {
                        //如果是转发节点
                        if (e instanceof ForwardingNode) {
                            //更新查找到新table
                            tab = ((ForwardingNode<K,V>)e).nextTable;
                            continue outer;
                        }
                        //非转发节点,则直接查找
                        else
                            return e.find(h,k);
                    }
                    if ((e = e.next) == null)
                        return null;
                }
            }
        }
    }

    //在co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>teIfAbsent和co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>中的节点占位符
    static final class ReservationNode<K,V> {
        ReservationNode() {
            super(RESERVED,null);
        }

        Node<K,Object k) {
            return null;
        }
    }

    /* ---------------- Table 初始化 and Resizing -------------- */

    //返回用于调整大小为n的table的<a href="https://www.jb51.cc/tag/biaoji/" target="_blank">标记</a>位。左移RESIZE_STAMP_SHIFT二进制位时,数值必为负.
    static final int resizeStamp(int n) {
        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
    }

    //使用sizeCtl中记录的size值初始化table
    //对于ConcurrentHashMap来说,<a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a>它的构造<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>仅仅是设置了一些参数而已。
    //而整个table的初始化是在向ConcurrentHashMap中插入元素的时候发生的。
    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            //如果当前有线程在对table进行初始化,则当前线程被阻塞,这也可以看出ConcurrentHashMap的初始化只能由<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>线程完成.
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // 初始化失败,进行自旋
            //利用CAS方法把sizectl的值置为-1,防止其他线程进入,表示本线程正在进行初始化
            else if (U.compareAndSwapInt(this,SIZECTL,sc,-1)) {
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        //初始化大小为n的node数组
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);////相当于0.75*n 设置<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>扩容的阈值
                    }
                } finally {
                    sizeCtl = sc;//sizeCtl的值改为0.75*n
                }
                break;
            }
        }
        return tab;
    }

    /**
     * <a href="https://www.jb51.cc/tag/zengjia/" target="_blank">增加</a>节点个数,如果table太小而没有resize,则检查是否需要resize。如果已经调整大小,则可以帮助复制转移节点。转移后重新检查占用情况,
     * 以确定是否还需要调整大小,因为resize总是比put操作滞后。
     */
    private final void addCount(long x,int check) {
        CounterCell[] as; long b,s;
        if ((as = counterCells) != null ||
                !U.compareAndSwapLong(this,BASECOUNT,b = baseCount,s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            if (as == null || (m = as.length - 1) < 0 ||
                    (a = as[ThreadLocalRandom.getProbe() &amp; m]) == null ||
                    !(uncontended =
                            U.compareAndSwapLong(a,CELLVALUE,v = a.value,v + x))) {
                fullAddCount(x,uncontended);
                return;
            }
            if (check <= 1)
                return;
            s = sumCount();
        }
        if (check >= 0) {
            Node<K,nt; int n,sc;
            while (s >= (long)(sc = sizeCtl) &amp;&amp; (tab = table) != null &amp;&amp;
                    (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                            transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this,sc + 1))
                        transfer(tab,nt);
                }
                else if (U.compareAndSwapInt(this,(rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab,null);
                s = sumCount();
            }
        }
    }

    //如果resize<a href="https://www.jb51.cc/tag/zhengzaijinxing/" target="_blank">正在进行</a>,则多个线程帮助节点的复制操作.
    final Node<K,V>[] helpTransfer(Node<K,V> f) {
        Node<K,V>[] nextTab; int sc;
        //如果tab不为null,且f为转移节点,且新table不为null
        if (tab != null &amp;&amp; (f instanceof ForwardingNode) &amp;&amp;
                (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
            //返回resize后的table的<a href="https://www.jb51.cc/tag/biaoji/" target="_blank">标记</a>位
            int rs = resizeStamp(tab.length);
            while (nextTab == nextTable &amp;&amp; table == tab &amp;&amp;
                    (sc = sizeCtl) < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this,sc + 1)) {
                    transfer(tab,nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }

    //尝试将table大小设定为:1.5*size+1,以容纳元素
    private final void tryPresize(int size) {
        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
                tableSi<a href="https://www.jb51.cc/tag/zef/" target="_blank">zef</a>or(size + (size >>> 1) + 1);
        int sc;
        while ((sc = sizeCtl) >= 0) {
            Node<K,V>[] tab = table; int n;
            if (tab == null || (n = tab.length) == 0) {
                n = (sc > c) ? sc : c;
                if (U.compareAndSwapInt(this,-1)) {
                    try {
                        if (table == tab) {
                            @SuppressWarnings("unchecked")
                            Node<K,?>[n];
                            table = nt;
                            sc = n - (n >>> 2);
                        }
                    } finally {
                        sizeCtl = sc;
                    }
                }
            }
            else if (c <= sc || n >= MAXIMUM_CAPACITY)
                break;
            else if (tab == table) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    Node<K,V>[] nt;
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                            transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this,null);
            }
        }
    }



    /**
     * 这是ConcurrentHashMa的扩容<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>
     * 将每<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>bin拷贝到新的table中
     */
    private final void transfer(Node<K,V>[] nextTab) {
        int n = tab.length,stride;
        //如果可用<a href="https://www.jb51.cc/tag/cpu/" target="_blank">cpu</a>数目>1,则stride=tab长度/<a href="https://www.jb51.cc/tag/cpu/" target="_blank">cpu</a><a href="https://www.jb51.cc/tag/shuliang/" target="_blank">数量</a>
        if ((stride = (N<a href="https://www.jb51.cc/tag/cpu/" target="_blank">cpu</a> > 1) ? (n >>> 3) / N<a href="https://www.jb51.cc/tag/cpu/" target="_blank">cpu</a> : n) < MIN_TRANSFER_STRIDE)
            //如果此时stride<最小分割并行段数,则更新stride为最小分割并行段数
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        //如果新table为null,则对新table初始化,长度为旧table的2倍
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,?>[n << 1];//2倍扩容
                nextTab = nt;
            } catch (Throwable ex) {      // try to <a href="https://www.jb51.cc/tag/cop/" target="_blank">cop</a>e with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            //nextTable指向新建table
            nextTable = nextTab;
            //转移索引改为n
            transferIndex = n;
        }
        //新table长度
        int nextn = nextTab.length;
        //转移节点:设定为新table,hash值=-1,其他<a href="https://www.jb51.cc/tag/shuxing/" target="_blank">属性</a>为null
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;///并发扩容的关键<a href="https://www.jb51.cc/tag/shuxing/" target="_blank">属性</a> 如果等于true 说明这个节点已经处理过
        //确保在提交nextTab之前进行扫描
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0,bound = 0;;) {
            Node<K,V> f; int fh;
            ////这个while循环体的作用就是在控制i--  通过i--可以依次遍历原hash表中的节点
            while (advance) {
                int nextIndex,nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                        (this,TRANSFERINDEX,nextIndex,nextBound = (nextIndex > stride ?
                                        nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                //如果所有的节点都已经完成复制工作  就把nextTable赋值给table 清空临时对象nextTabl
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this,sc = sizeCtl,sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            //i位置节点为null,原table中的i位置放入forwardNode节点,这个也是触发并发扩容的关键点;
            else if ((f = tabAt(tab,i)) == null)
                advance = casTabAt(tab,fwd);
            //当前节点已经被复制过,直接跳过.是控制并发扩容的关键
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            //同步代码块,复制节点,保证线程安全的复制,不重复不冲突
            else {
                synchronized (f) {
                    if (tabAt(tab,V> ln,hn;
                        //如果节点为链表节点
                        if (fh >= 0) {
                            int runBit = fh &amp; n;
                            Node<K,V> lastRun = f;
                            //查找lastRun的位置
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash &amp; n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            //lastRun节点前的节点都会构造<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>反序链表,lastRun节点开始到后面的节点则顺序不变
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph &amp; n) == 0)
                                    ln = new Node<K,V>(ph,pk,pv,ln);
                                else
                                    hn = new Node<K,hn);
                            }
                            //在nextTable的i位置上插入<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>链表
                            setTabAt(nextTab,ln);
                            //在nextTable的i+n的位置上插入另<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>链表
                            setTabAt(nextTab,i + n,hn);
                            //在table的i位置上插入forwardNode节点  表示已经处理过该节点
                            setTabAt(tab,fwd);
                            //设置advance为true 返回到上面的while循环中 就可以执行i--操作
                            advance = true;
                        }
                        //如果被复制节点为红黑树节点包装类TreeBin,也做<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>反序处理,并且判断是否需要untreeify,
                        //把处理的结果分别放在nextTable的i和i+n的位置上
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> lo = null,loTail = null;
                            TreeNode<K,V> hi = null,hiTail = null;
                            int lc = 0,hc = 0;
                            for (Node<K,V> e = t.f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                        (h,e.key,e.val,null);
                                if ((h &amp; n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ////如果扩容后已经不再需要tree的结构 反向转换为链表结构
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                    (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                    (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            //下面<a href="https://www.jb51.cc/tag/gongneng/" target="_blank">功能</a>和链表处理一致
                            setTabAt(nextTab,ln);
                            setTabAt(nextTab,hn);
                            setTabAt(tab,fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

    /* ---------------- Counter support 计数器<a href="https://www.jb51.cc/tag/zhichi/" target="_blank">支持</a><a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>-------------- */

    /**
     * A padded cell for <a href="https://www.jb51.cc/tag/dis/" target="_blank">dis</a>tributing counts.  Adapted from LongAdder
     * and Striped64.  See their internal docs for explanation.
     * 用于分发计数的填充单元格。改编自LongAdder和Striped64。请参阅他们的内部文档以获得解释。
     * 用于辅助sumCount()<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>
     */
    @sun.misc.Contended static final class CounterCell {
        //内存可见value
        volatile long value;
        CounterCell(long x) { value = x; }
    }

    //ConcurrentHashMap中节点总数
    final long sumCount() {
        CounterCell[] as = counterCells; CounterCell a;
        long sum = baseCount;
        if (as != null) {
             for (int i = 0; i < as.length; ++i) {
                        if ((a = as[i]) != null)
                            sum += a.value;
            }
        }
        return sum;
    }

    /**
     * LongAdder是java8新增的.
     * LongAdders与ConcurrentHashMap一起使用,以维护可伸缩的频率映射(一种直方图或多重集)。
     * 例如,要为ConcurrentHashMap<String,LongAdder> freqs <a href="https://www.jb51.cc/tag/tianjia/" target="_blank">添加</a><a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>计数,
     * 初始化(如果尚未存在),可以使用freqs.co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>teIfAbsent(k  - > new LongAdder())
     */
    private final void fullAddCount(long x,boolean wasUncontended) {
        int h;
        if ((h = ThreadLocalRandom.getProbe()) == 0) {
            ThreadLocalRandom.localInit();      // force initialization
            h = ThreadLocalRandom.getProbe();
            wasUncontended = true;
        }
        boolean collide = false;                // True if last slot nonempty
        for (;;) {
            CounterCell[] as; CounterCell a; int n; long v;
            if ((as = counterCells) != null &amp;&amp; (n = as.length) > 0) {
                if ((a = as[(n - 1) &amp; h]) == null) {
                    if (cellsBusy == 0) {            // Try to attach new Cell
                        CounterCell r = new CounterCell(x); // Optimistic create
                        if (cellsBusy == 0 &amp;&amp;
                                U.compareAndSwapInt(this,CELLSBUSY,1)) {
                            boolean created = false;
                            try {               // Recheck under lock
                                CounterCell[] rs; int m,j;
                                if ((rs = counterCells) != null &amp;&amp;
                                        (m = rs.length) > 0 &amp;&amp;
                                        rs[j = (m - 1) &amp; h] == null) {
                                    rs[j] = r;
                                    created = true;
                                }
                            } finally {
                                cellsBusy = 0;
                            }
                            if (created)
                                break;
                            continue;           // Slot is <a href="https://www.jb51.cc/tag/Now/" target="_blank">Now</a> non-empty
                        }
                    }
                    collide = false;
                }
                else if (!wasUncontended)       // CAS already k<a href="https://www.jb51.cc/tag/Now/" target="_blank">Now</a>n to fail
                    wasUncontended = true;      // Continue after rehash
                else if (U.compareAndSwapLong(a,v + x))
                    break;
                else if (counterCells != as || n >= N<a href="https://www.jb51.cc/tag/cpu/" target="_blank">cpu</a>)
                    collide = false;            // At max size or stale
                else if (!collide)
                    collide = true;
                else if (cellsBusy == 0 &amp;&amp;
                        U.compareAndSwapInt(this,1)) {
                    try {
                        if (counterCells == as) {// Expand table unless stale
                            CounterCell[] rs = new CounterCell[n << 1];
                            for (int i = 0; i < n; ++i)
                                rs[i] = as[i];
                            counterCells = rs;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                h = ThreadLocalRandom.advanceProbe(h);
            }
            else if (cellsBusy == 0 &amp;&amp; counterCells == as &amp;&amp;
                    U.compareAndSwapInt(this,1)) {
                boolean init = false;
                try {                           // Initialize table
                    if (counterCells == as) {
                        CounterCell[] rs = new CounterCell[2];
                        rs[h &amp; 1] = new CounterCell(x);
                        counterCells = rs;
                        init = true;
                    }
                } finally {
                    cellsBusy = 0;
                }
                if (init)
                    break;
            }
            else if (U.compareAndSwapLong(this,v = baseCount,v + x))
                break;                          // Fall back on using base
        }
    }

    /* ---------------- TreeBins 转换相关-------------- */

    //在指定索引处替换掉所有的链表节点为红黑树节点;当然如果此时table特别小,则不执行转换操作,而应执行resize操作.
    private final void treeifyBin(Node<K,int index) {
        Node<K,V> b; int n,sc;
        if (tab != null) {
            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
                tryPresize(n << 1);
            else if ((b = tabAt(tab,index)) != null &amp;&amp; b.hash >= 0) {
                synchronized (b) {
                    if (tabAt(tab,index) == b) {
                        TreeNode<K,tl = null;
                        for (Node<K,V> e = b; e != null; e = e.next) {
                            TreeNode<K,V> p =
                                    new TreeNode<K,V>(e.hash,null);
                            if ((p.prev = tl) == null)
                                hd = p;
                            else
                                tl.next = p;
                            tl = p;
                        }
                        //TreeBin封装了TreeNode节点,将索引index处节点设置为新的TreeBin节点
                        setTabAt(tab,index,V>(hd));
                    }
                }
            }
        }
    }

    //将给定list中红黑树节点全部替换为链表节点,并返回链表
    static <K,V> untreeify(Node<K,V> b) {
        Node<K,tl = null;
        for (Node<K,V> q = b; q != null; q = q.next) {
            Node<K,V> p = new Node<K,V>(q.hash,null);
            if (tl == null)
                hd = p;
            else
                tl.next = p;
            tl = p;
        }
        return hd;
    }

    /* ---------------- TreeNodes -------------- */

    /**
     * Nodes for use in TreeBins
     * 也是<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>核心的数据结构.
     * 当链表长度过长的时候,会转换为TreeNode。但是与HashMap不相同的是,它并不是直接转换为红黑树,
     * 而是把这些结点包装成TreeNode放在TreeBin对象中,由TreeBin完成对红黑树的包装。
     * 而且TreeNode在ConcurrentHashMap集成自Node类,而并非HashMap中的集成自LinkedHashMap.Entry<K,V>类,
     * 也就是说TreeNode带有next指针,这样做的目的是方便基于TreeBin的访问。
     */
    static final class TreeNode<K,V> {
        //用于红黑树节点连接,因为本身是<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>链表,所以需要<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>指针指向双亲节点
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        //前驱节点指针,用于<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a>节点
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;

        TreeNode(int hash,V> next,TreeNode<K,V> parent) {
            super(hash,next);
            this.parent = parent;
        }

        Node<K,Object k) {
            return findTreeNode(h,null);
        }

        /**
         * 从给定根节点出发,查找指定key的树节点.
         * 红黑树节点排序规则:按照节点的hash值排序
         * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m h 查找节点hash值
         * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m k 查找节点key
         * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m kc
         *
         */
        final TreeNode<K,V> findTreeNode(int h,Class<?> kc) {
            //指定key不为null
            if (k != null) {
                TreeNode<K,V> p = this;
                do  {
                    int ph,dir; K pk; TreeNode<K,V> q;
                    TreeNode<K,V> pl = p.left,pr = p.right;
                    //查找节点hash值比当前节点p的hash值小,则转向p的左孩子进行遍历,可见 红黑树按照节点的hash值排序
                    if ((ph = p.hash) > h)
                        p = pl;
                    //转右孩子
                    else if (ph < h)
                        p = pr;
                    //查找节点和当前p节点hash值和key都一样,则查找成功,返回查找节点
                    else if ((pk = p.key) == k || (pk != null &amp;&amp; k.equals(pk)))
                        return p;
                    else if (pl == null)
                        p = pr;
                    else if (pr == null)
                        p = pl;
                    else if ((kc != null ||
                            (kc = comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>bleClassFor(k)) != null) &amp;&amp;
                            (dir = compareComp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>bles(kc,pk)) != 0)
                        p = (dir < 0) ? pl : pr;
                    //递归查找
                    else if ((q = pr.findTreeNode(h,kc)) != null)
                        return q;
                    else
                        p = pl;
                } while (p != null);
            }
            return null;
        }
    }

    /* ---------------- TreeBins -------------- */

    /**
     * TreeNodes用作bin的头节点.在实际的ConcurrentHashMap“数组”中,存放的是TreeBin对象,而不是TreeNode对象,这是与HashMap的区别。
     * TreeBins不保存key和value,而是指向TreeNodes链表及其根节点.
     * TreeBin还维持<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>读写锁,从而保证在红黑树重构前,优先完成读操作,然后再执行写操作.
     */
    static final class TreeBin<K,V> {
        //<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>TreeBin既要有指向根节点的指针,也要有指向第<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点指针
        TreeNode<K,V> root;//根节点
        volatile TreeNode<K,V> f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t;//第<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>节点
        volatile Thread waiter;//等待线程
        volatile int lockState;//锁状态

        //lockState的一些值
        static final int WRITER = 1; // 持有写锁的锁状态值
        static final int WAITER = 2; // 等待写锁的锁状态值
        static final int READER = 4; // 设置读锁时的锁状态增量值

        /**
         * 插入节点时,如果hash值相同而又没有其它可比较的元素时,此<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>可用于打破此种插入僵局.
         * 我们不需要<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>全局有序,只需要<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>插入规则,保证在调整平衡时可以维持等价关系.
         * 僵局关系的进一步打破也使得测试变得简单了一些.
         * 和hashmap<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>一样
         */
        static int tieBreakOrder(Object a,Object b) {
            int d;
            //如果a为null,或者b为null,或者a和b是同<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>类的实
            if (a == null || b == null ||
                    (d = a.getClass().getName().
                            compar<a href="https://www.jb51.cc/tag/eto/" target="_blank">eto</a>(b.getClass().getName())) == 0)//反射<a href="https://www.jb51.cc/tag/huoqu/" target="_blank">获取</a>类名
            //identityHashCode():无论给定对象的类是否覆盖hashCode(),都会返回给定对象的哈希码,与<a href="https://www.jb51.cc/tag/mo/" target="_blank">默</a>认<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>hashCode()返回的哈希码相同。
            //如果传入参数a为null,则返回值为0;
                d = (Sy<a href="https://www.jb51.cc/tag/stem/" target="_blank">stem</a>.identityHashCode(a) <= Sy<a href="https://www.jb51.cc/tag/stem/" target="_blank">stem</a>.identityHashCode(b) ?
                        -1 : 1);
            return d;
        }

        //利用头节点为b的初始set节点集合,创建<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>bin,里面放了一棵红黑树
        TreeBin(TreeNode<K,V> b) {
            //这就它的构造<a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>,TREEBIN=-1,树根节点的hash值
            super(TREEBIN,null);

            this.f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t = b;
            TreeNode<K,V> r = null;
            for (TreeNode<K,V> x = b,next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                if (r == null) {
                    x.parent = null;
                    x.red = false;
                    r = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = r;;) {
                        int dir,ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &amp;&amp;
                                (kc = comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>bleClassFor(k)) == null) ||
                                (dir = compareComp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>bles(kc,pk)) == 0)
                            dir = tieBreakOrder(k,pk);
                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            r = balanceInsertion(r,x);
                            break;
                        }
                    }
                }
            }
            this.root = r;
            assert checkInvariants(root);
        }

        //红黑树重构开始前,<a href="https://www.jb51.cc/tag/huoqu/" target="_blank">获取</a>写锁
        private final void lockRoot() {
            if (!U.compareAndSwapInt(this,LOCKSTATE,WRITER))
                contendedLock(); // offload to sep<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>te method
        }

        //红黑树重构完成后,释放写锁
        private final void unlockRoot() {
            lockState = 0;
        }

        //root被锁定时,阻塞其他请求.
        private final void contendedLock() {
            boolean waiting = false;
            for (int s;;) {
                if (((s = lockState) &amp; ~WAITER) == 0) {
                    if (U.compareAndSwapInt(this,s,WRITER)) {
                        if (waiting)
                            waiter = null;
                        return;
                    }
                }
                else if ((s &amp; WAITER) == 0) {
                    if (U.compareAndSwapInt(this,s | WAITER)) {
                        waiting = true;
                        waiter = Thread.currentThread();
                    }
                }
                else if (waiting)
                    LockSupport.park(this);
            }
        }

        //根据给定hash值和key查找树节点.
        //首先尝试从树根节点开始查找
        //如果<a href="https://www.jb51.cc/tag/huoqu/" target="_blank">获取</a>不到bin的锁,则<a href="https://www.jb51.cc/tag/chaxun/" target="_blank">查询</a>需要线性时间:o(n),也就是从头到位底链表进行了遍历
        //所以TreeBin的查找节点过程:时间复杂度为o(logN)或为o(N)
        final Node<K,Object k) {
            if (k != null) {
                for (Node<K,V> e = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t; e != null; ) {
                    int s; K ek;
                    if (((s = lockState) &amp; (WAITER|WRITER)) != 0) {
                        if (e.hash == h &amp;&amp;
                                ((ek = e.key) == k || (ek != null &amp;&amp; k.equals(ek))))
                            return e;
                        e = e.next;
                    }
                    else if (U.compareAndSwapInt(this,s + READER)) {
                        TreeNode<K,p;
                        try {
                            p = ((r = root) == null ? null :
                                    r.findTreeNode(h,null));
                        } finally {
                            Thread w;
                            if (U.getAndAddInt(this,-READER) ==
                                    (READER|WAITER) &amp;&amp; (w = waiter) != null)
                                LockSupport.unpark(w);
                        }
                        return p;
                    }
                }
            }
            return null;
        }


        //<a href="https://www.jb51.cc/tag/tianjia/" target="_blank">添加</a><a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>树节点
        final TreeNode<K,V> putTreeVal(int h,K k,V v) {
            Class<?> kc = null;
            boolean searched = false;
            for (TreeNode<K,V> p = root;;) {
                int dir,ph; K pk;
                if (p == null) {
                    f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t = root = new TreeNode<K,null);
                    break;
                }
                else if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (pk != null &amp;&amp; k.equals(pk)))
                    return p;
                else if ((kc == null &amp;&amp;
                        (kc = comp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>bleClassFor(k)) == null) ||
                        (dir = compareComp<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>bles(kc,pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q,ch;
                        searched = true;
                        if (((ch = p.left) != null &amp;&amp;
                                (q = ch.findTreeNode(h,kc)) != null) ||
                                ((ch = p.right) != null &amp;&amp;
                                        (q = ch.findTreeNode(h,kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k,pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    TreeNode<K,V> x,f = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t;
                    f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t = x = new TreeNode<K,xp);
                    if (f != null)
                        f.prev = x;
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    if (!xp.red)
                        x.red = true;
                    else {
                        lockRoot();
                        try {
                            root = balanceInsertion(root,x);
                        } finally {
                            unlockRoot();
                        }
                    }
                    break;
                }
            }
            assert checkInvariants(root);
            return null;
        }

        /**
         * 移除<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>树节点.在此<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>被<a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a>前此节点必须存在.
         * 这比典型的红黑<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a><a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>更混乱,因为我们不能交换内部节点和其后继叶子节点的<a href="https://www.jb51.cc/tag/neirong/" target="_blank">内容</a>。
         * 所以,取而代之的是交换树<a href="https://www.jb51.cc/tag/lianjie/" target="_blank">链接</a>。
         * @return 返回值为true,代表<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a>节点后,bin内节点太少,需要将红黑树转为链表.
         */
        final boolean removeTreeNode(TreeNode<K,V> p) {
            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
            TreeNode<K,rl;
            if (pred == null)
                f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t = next;
            else
                pred.next = next;
            if (next != null)
                next.prev = pred;
            if (f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t == null) {
                root = null;
                return true;
            }
            if ((r = root) == null || r.right == null || // too small
                    (rl = r.left) == null || rl.left == null)
                return true;
            lockRoot();
            try {
                TreeNode<K,V> replacement;
                TreeNode<K,V> pl = p.left;
                TreeNode<K,V> pr = p.right;
                if (pl != null &amp;&amp; pr != null) {
                    TreeNode<K,V> s = pr,sl;
                    while ((sl = s.left) != null) // find successor
                        s = sl;
                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                    TreeNode<K,V> sr = s.right;
                    TreeNode<K,V> pp = p.parent;
                    if (s == pr) { // p was s's direct parent
                        p.parent = s;
                        s.right = p;
                    }
                    else {
                        TreeNode<K,V> sp = s.parent;
                        if ((p.parent = sp) != null) {
                            if (s == sp.left)
                                sp.left = p;
                            else
                                sp.right = p;
                        }
                        if ((s.right = pr) != null)
                            pr.parent = s;
                    }
                    p.left = null;
                    if ((p.right = sr) != null)
                        sr.parent = p;
                    if ((s.left = pl) != null)
                        pl.parent = s;
                    if ((s.parent = pp) == null)
                        r = s;
                    else if (p == pp.left)
                        pp.left = s;
                    else
                        pp.right = s;
                    if (sr != null)
                        replacement = sr;
                    else
                        replacement = p;
                }
                else if (pl != null)
                    replacement = pl;
                else if (pr != null)
                    replacement = pr;
                else
                    replacement = p;
                if (replacement != p) {
                    TreeNode<K,V> pp = replacement.parent = p.parent;
                    if (pp == null)
                        r = replacement;
                    else if (p == pp.left)
                        pp.left = replacement;
                    else
                        pp.right = replacement;
                    p.left = p.right = p.parent = null;
                }

                root = (p.red) ? r : balanceDeletion(r,replacement);

                if (p == replacement) {  // detach pointers
                    TreeNode<K,V> pp;
                    if ((pp = p.parent) != null) {
                        if (p == pp.left)
                            pp.left = null;
                        else if (p == pp.right)
                            pp.right = null;
                        p.parent = null;
                    }
                }
            } finally {
                unlockRoot();
            }
            assert checkInvariants(root);
            return false;
        }

        /* --------------------红黑树<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>,全部改自CLR算法---------------------------------------- */

        //左旋
        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,pp,rl;
            if (p != null &amp;&amp; (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        //右旋
        static <K,V> rotateRight(TreeNode<K,V> l,lr;
            if (p != null &amp;&amp; (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        //插入后,调整平衡和颜色
        static <K,V> balanceInsertion(TreeNode<K,V> x) {
            x.red = true;
            for (TreeNode<K,V> xp,xpp,xppl,xppr;;) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null &amp;&amp; xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.right) {
                            root = rotateLeft(root,x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root,xpp);
                            }
                        }
                    }
                }
                else {
                    if (xppl != null &amp;&amp; xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.left) {
                            root = rotateRight(root,x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root,xpp);
                            }
                        }
                    }
                }
            }
        }

        //<a href="https://www.jb51.cc/tag/shanchu/" target="_blank">删除</a>后调整平衡和颜色
        static <K,V> balanceDeletion(TreeNode<K,V> x) {
            for (TreeNode<K,xpl,xpr;;)  {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (x.red) {
                    x.red = false;
                    return root;
                }
                else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null &amp;&amp; xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root,xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpr.left,sr = xpr.right;
                        if ((sr == null || !sr.red) &amp;&amp;
                                (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        }
                        else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root,xpr);
                                xpr = (xp = x.parent) == null ?
                                        null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root,xp);
                            }
                            x = root;
                        }
                    }
                }
                else { // symmetric
                    if (xpl != null &amp;&amp; xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root,xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpl.left,sr = xpl.right;
                        if ((sl == null || !sl.red) &amp;&amp;
                                (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        }
                        else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root,xpl);
                                xpl = (xp = x.parent) == null ?
                                        null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root,xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        //递归不变检查,用于检查整个红黑树连接上是否有<a href="https://www.jb51.cc/tag/cuowu/" target="_blank">错误</a>
        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
            //tp双亲,tl左孩子,tr右孩子,tb前驱,tn后继
            TreeNode<K,V> tp = t.parent,tl = t.left,tr = t.right,tb = t.prev,tn = (TreeNode<K,V>)t.next;
            //双亲不为null,前驱的后继不是当前节点t,故连接<a href="https://www.jb51.cc/tag/cuowu/" target="_blank">错误</a>,返回false
            if (tb != null &amp;&amp; tb.next != t)
                return false;
            //后继不为null,后继的前驱不为当前节点t,故<a href="https://www.jb51.cc/tag/lianjie/" target="_blank">链接</a><a href="https://www.jb51.cc/tag/cuowu/" target="_blank">错误</a>,返回false
            if (tn != null &amp;&amp; tn.prev != t)
                return false;
            if (tp != null &amp;&amp; t != tp.left &amp;&amp; t != tp.right)
                return false;
            if (tl != null &amp;&amp; (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null &amp;&amp; (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red &amp;&amp; tl != null &amp;&amp; tl.red &amp;&amp; tr != null &amp;&amp; tr.red)
                return false;
            if (tl != null &amp;&amp; !checkInvariants(tl))
                return false;
            if (tr != null &amp;&amp; !checkInvariants(tr))
                return false;
            return true;
        }

        private static final sun.misc.Unsafe U;
        private static final long LOCKSTATE;
        static {
            try {
                U = sun.misc.Unsafe.getUnsafe();
                Class<?> k = TreeBin.class;
                LOCKSTATE = U.objectFieldOffset
                        (k.getDeclaredField("lockState"));//反射<a href="https://www.jb51.cc/tag/huoquziduan/" target="_blank">获取字段</a>值
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    }

    /* ----------------Table 遍历 -------------- */

    //在继续使用当前table前,必须记录转发表的区域的表,其长度和当前遍历索引。
    static final class TableStack<K,V> {
        int length;
        int index;
        Node<K,V>[] tab;
        TableStack<K,V> next;
    }

    /**
     * 对诸如containsValue之类的<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>要进行封装遍历.alsoserves是其他迭代器和分割器的基类.
     * 遍历过程中,可能出现resize,为了面对可能的持续调整,需要记录大量的状态,因此很难通过volatile进行优化,* 即便如此,遍历仍然保持合理的吞吐量。通常情况下,迭代逐个进行遍历列表。但是,如果表已经调整大小,那么所有未来的步骤
     * 必须遍历当前索引处的bin以及(index + baseSize).
     * 为了处理<a href="https://www.jb51.cc/tag/yonghu/" target="_blank">用户</a>间跨线程共享迭代器之<a href="https://www.jb51.cc/tag/jiande/" target="_blank">间的</a>冲突,如果迭代器索引边界失效,则迭代停止.
     */

    static class Traverser<K,V> {
        Node<K,V>[] tab;        // current table; updated if resized
        Node<K,V> next;         // the next entry to use
        TableStack<K,V> stack,spare; // to save/restore on ForwardingNodes
        int index;              // index of bin to use next
        int baseIndex;          // current index of initial table
        int baseLimit;          // index bound for initial table
        final int baseSize;     // initial table size

        Traverser(Node<K,int size,int index,int limit) {
            this.tab = tab;
            this.baseSize = size;
            this.baseIndex = this.index = index;
            this.baseLimit = limit;
            this.next = null;
        }

        //继续遍历,返回下<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>有效节点,如果没有则返回null
        final Node<K,V> advance() {
            Node<K,V> e;
            if ((e = next) != null)
                e = e.next;
            for (;;) {
                Node<K,V>[] t; int i,n;  // must use locals in checks
                if (e != null)
                    return next = e;
                if (baseIndex >= baseLimit || (t = tab) == null ||
                        (n = t.length) <= (i = index) || i < 0)
                    return next = null;
                if ((e = tabAt(t,i)) != null &amp;&amp; e.hash < 0) {
                    if (e instanceof ForwardingNode) {
                        tab = ((ForwardingNode<K,V>)e).nextTable;
                        e = null;
                        pushState(t,n);
                        continue;
                    }
                    else if (e instanceof TreeBin)
                        e = ((TreeBin<K,V>)e).f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t;
                    else
                        e = null;
                }
                if (stack != null)
                    recoverState(n);
                else if ((index = i + baseSize) >= n)
                    index = ++baseIndex; // visit upper slots if present
            }
        }

        //遇到转发节点时,保存遍历状态
        private void pushState(Node<K,V>[] t,int n) {
            TableStack<K,V> s = spare;  // reuse if possible
            if (s != null)
                spare = s.next;
            else
                s = new TableStack<K,V>();
            s.tab = t;
            s.length = n;
            s.index = i;
            s.next = stack;
            stack = s;
        }

        //取出遍历状态栈的栈定元素.
        private void recoverState(int n) {
            TableStack<K,V> s; int len;
            while ((s = stack) != null &amp;&amp; (index += (len = s.length)) >= n) {
                n = len;
                index = s.index;
                tab = s.tab;
                s.tab = null;
                TableStack<K,V> next = s.next;
                s.next = spare; // save for reuse
                stack = next;
                spare = s;
            }
            if (s == null &amp;&amp; (index += baseSize) >= n)
                index = ++baseIndex;
        }
    }

    //基于key,entry的迭代器.在Traverser基础上<a href="https://www.jb51.cc/tag/tianjia/" target="_blank">添加</a>了一些变量以<a href="https://www.jb51.cc/tag/zhichi/" target="_blank">支持</a>i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor.remove<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>
    static class BaseI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,V> extends Traverser<K,V> {
        final ConcurrentHashMap<K,V> map;
        Node<K,V> lastReturned;
        BaseI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor(Node<K,int limit,ConcurrentHashMap<K,V> map) {
            super(tab,size,limit);
            this.map = map;
            advance();
        }

        public final boolean hasNext() { return next != null; }
        public final boolean hasMoreElements() { return next != null; }

        public final void remove() {
            Node<K,V> p;
            if ((p = lastReturned) == null)
                throw new Ille<a href="https://www.jb51.cc/tag/gal/" target="_blank">gal</a>StateException();
            lastReturned = null;
            map.replaceNode(p.key,null);
        }
    }

    //key迭代器
    static final class KeyI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,V> extends BaseI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,V>
            implements I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K>,Enumeration<K> {
        KeyI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor(Node<K,limit,map);
        }

        public final K next() {
            Node<K,V> p;
            if ((p = next) == null)
                throw new NoSuchElementException();
            K k = p.key;
            lastReturned = p;
            advance();
            return k;
        }

        public final K nextElement() { return next(); }
    }

    //value迭代器
    static final class ValueI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,V>
            implements I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<V>,Enumeration<V> {
        ValueI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor(Node<K,map);
        }

        public final V next() {
            Node<K,V> p;
            if ((p = next) == null)
                throw new NoSuchElementException();
            V v = p.val;
            lastReturned = p;
            advance();
            return v;
        }

        public final V nextElement() { return next(); }
    }

    //Entry迭代器
    static final class EntryI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,V>
            implements I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<Map.Entry<K,V>> {
        EntryI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor(Node<K,map);
        }

        public final Map.Entry<K,V> next() {
            Node<K,V> p;
            if ((p = next) == null)
                throw new NoSuchElementException();
            K k = p.key;
            V v = p.val;
            lastReturned = p;
            advance();
            return new MapEntry<K,V>(k,map);
        }
    }

    //从EntryI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor导出<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>Entry
    static final class MapEntry<K,V> {
        final K key; // non-null
        V val;       // non-null
        final ConcurrentHashMap<K,V> map;
        MapEntry(K key,V> map) {
            this.key = key;
            this.val = val;
            this.map = map;
        }
        public K getKey()        { return key; }
        public V getValue()      { return val; }
        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
        public String toString() { return key + "=" + val; }

        public boolean equals(Object o) {
            Object k,v; Map.Entry<?,?>)o).getKey()) != null &amp;&amp;
                    (v = e.getValue()) != null &amp;&amp;
                    (k == key || k.equals(key)) &amp;&amp;
                    (v == val || v.equals(val)));
        }

        /**
         * 设置我们的entry的value并写入map。
         * 注意:返回的值<a href="https://www.jb51.cc/tag/zaizheli/" target="_blank">在这里</a>有点随便。因为可能返回的值已经被其它线程做过更改了,而返回值并未<a href="https://www.jb51.cc/tag/huoqu/" target="_blank">获取</a>到最新的值.
         */
        public V setValue(V value) {
            if (value == null) throw new NullPointerException();
            V v = val;
            val = value;
            map.put(key,value);
            return v;
        }
    }

    //key分割器
    static final class KeySpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,V>
            implements Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K> {
        long est;               // size estimate
        KeySpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor(Node<K,long est) {
            super(tab,limit);
            this.est = est;
        }

        public Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K> trySplit() {
            int i,h;
            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
                    new KeySpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,V>(tab,baseSize,baseLimit = h,est >>>= 1);
        }

        public void forEachRemaining(Consumer<? super K> action) {
            if (action == null) throw new NullPointerException();
            for (Node<K,V> p; (p = advance()) != null;)
                action.accept(p.key);
        }

        public boolean tryAdvance(Consumer<? super K> action) {
            if (action == null) throw new NullPointerException();
            Node<K,V> p;
            if ((p = advance()) == null)
                return false;
            action.accept(p.key);
            return true;
        }

        public long estimateSize() { return est; }

        public int <a href="https://www.jb51.cc/tag/characteristics/" target="_blank">characteristics</a>() {
            return Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor.<a href="https://www.jb51.cc/tag/dis/" target="_blank">dis</a>TINCT | Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor.CONCURRENT |
                    Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor.NONNULL;
        }
    }

    //value分割器
    static final class ValueSpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,V>
            implements Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<V> {
        long est;               // size estimate
        ValueSpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor(Node<K,limit);
            this.est = est;
        }

        public Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<V> trySplit() {
            int i,h;
            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
                    new ValueSpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,est >>>= 1);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            if (action == null) throw new NullPointerException();
            for (Node<K,V> p; (p = advance()) != null;)
                action.accept(p.val);
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            if (action == null) throw new NullPointerException();
            Node<K,V> p;
            if ((p = advance()) == null)
                return false;
            action.accept(p.val);
            return true;
        }

        public long estimateSize() { return est; }

        public int <a href="https://www.jb51.cc/tag/characteristics/" target="_blank">characteristics</a>() {
            return Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor.CONCURRENT | Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor.NONNULL;
        }
    }

    //entry分割器
    static final class EntrySpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,V>
            implements Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<Map.Entry<K,V>> {
        final ConcurrentHashMap<K,V> map; // To export MapEntry
        long est;               // size estimate
        EntrySpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor(Node<K,long est,limit);
            this.map = map;
            this.est = est;
        }

        public Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<Map.Entry<K,V>> trySplit() {
            int i,h;
            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
                    new EntrySpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,est >>>= 1,map);
        }

        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
            if (action == null) throw new NullPointerException();
            for (Node<K,V> p; (p = advance()) != null; )
                action.accept(new MapEntry<K,V>(p.key,p.val,map));
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
            if (action == null) throw new NullPointerException();
            Node<K,V> p;
            if ((p = advance()) == null)
                return false;
            action.accept(new MapEntry<K,map));
            return true;
        }

        public long estimateSize() { return est; }

        public int <a href="https://www.jb51.cc/tag/characteristics/" target="_blank">characteristics</a>() {
            return Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor.<a href="https://www.jb51.cc/tag/dis/" target="_blank">dis</a>TINCT | Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor.CONCURRENT |
                    Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor.NONNULL;
        }
    }

    /*---------并行批量操作 P<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llel bulk operations---------*/

    /**
     * 计算批量任务的初始批次值。
     * 在执行最终的操作之前,返回值将是将任务一分为二的<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>指数值exp2.我的理解是,如果返回为3,则是将任务分为8部分,并行处理.
     * 此值计算速度很快,适合用作二划分
     */

    final int batchFor(long b) {
        long n;
        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
            return 0;
        int sp = ForkJoinPool.getCommonPoolP<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelism() << 2; // slack of 4
        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
    }


    //@since 1.8
    public void forEach(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,BiConsumer<? super K,? super V> action) {
        if (action == null) throw new NullPointerException();
        new ForEachMappingTask<K,V>
                (null,batchFor(p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold),table,action).invoke();
    }

    //@since 1.8
    public <U> void forEach(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,? extends U> transformer,Consumer<? super U> action) {
        if (transformer == null || action == null)
            throw new NullPointerException();
        new ForEachTransformedMappingTask<K,V,U>
                (null,transformer,action).invoke();
    }

    /**
     * 对每个(key,value)应用给定的<a href="https://www.jb51.cc/tag/sousuo/" target="_blank">搜索</a><a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>并返回<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>非空结果,如果没有,则返回null。
     * 成功后,进一步的元素处理将被抑制,<a href="https://www.jb51.cc/tag/sousuo/" target="_blank">搜索</a><a href="https://www.jb51.cc/tag/gongneng/" target="_blank">功能</a>的任何其他并行<a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a>的结果都将被忽略。
     * @since 1.8
     */
    public <U> U search(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,? extends U> searchFunction) {
        if (searchFunction == null) throw new NullPointerException();
        return new SearchMappingsTask<K,searchFunction,new <a href="https://www.jb51.cc/tag/atomicreference/" target="_blank">atomicreference</a><U>()).invoke();
    }

    //since 1.8,合并结果值
    public <U> U reduce(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,BiFunction<? super U,? super U,? extends U> reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceMappingsTask<K,reducer).invoke();
    }

    /**
     * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m basis reduction操作的<a href="https://www.jb51.cc/tag/mo/" target="_blank">默</a>认初始化值
     * @since 1.8
     */
    public double reduc<a href="https://www.jb51.cc/tag/eto/" target="_blank">eto</a>Double(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleBiFunction<? super K,? super V> transformer,double basis,DoubleBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceMappingsT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,basis,reducer).invoke();
    }


    //@since 1.8
    public long reduc<a href="https://www.jb51.cc/tag/eto/" target="_blank">eto</a>Long(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,ToLongBiFunction<? super K,long basis,LongBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceMappingsToLongTask<K,reducer).invoke();
    }

    // @since 1.8
    public int reduc<a href="https://www.jb51.cc/tag/eto/" target="_blank">eto</a>Int(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,ToIntBiFunction<? super K,int basis,IntBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceMappingsToIntTask<K,reducer).invoke();
    }

    /**
     * Performs the given action for each key.
     * @since 1.8
     */
    public void forEachKey(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,Consumer<? super K> action) {
        if (action == null) throw new NullPointerException();
        new ForEachKeyTask<K,action).invoke();
    }

    /**
     * @since 1.8
     */
    public <U> void forEachKey(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,Consumer<? super U> action) {
        if (transformer == null || action == null)
            throw new NullPointerException();
        new ForEachTransformedKeyTask<K,action).invoke();
    }

    /**
     * 根据给定<a href="https://www.jb51.cc/tag/chaxun/" target="_blank">查询</a><a href="https://www.jb51.cc/tag/hanshu/" target="_blank">函数</a>,返回<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>非null结果.如果没有则返回null
     * 成功后,进一步的元素处理将被抑制,<a href="https://www.jb51.cc/tag/sousuo/" target="_blank">搜索</a><a href="https://www.jb51.cc/tag/gongneng/" target="_blank">功能</a>的任何其他并行<a href="https://www.jb51.cc/tag/diaoyong/" target="_blank">调用</a>的结果都将被忽略。
     * @since 1.8
     */
    public <U> U searchKeys(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,? extends U> searchFunction) {
        if (searchFunction == null) throw new NullPointerException();
        return new SearchKeysTask<K,new <a href="https://www.jb51.cc/tag/atomicreference/" target="_blank">atomicreference</a><U>()).invoke();
    }

    /**
     * 所有key的<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>合并操作
     * @since 1.8
     */
    public K reduceKeys(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,? super K,? extends K> reducer) {
        if (reducer == null) throw new NullPointerException();
        return new ReduceKeysTask<K,reducer).invoke();
    }

    /**
     * 对key的reduce操作
     * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold 并行被处理的元素的个数阈值
     * @since 1.8
     */
    public <U> U reduceKeys(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,? extends U> reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceKeysTask<K,reducer).invoke();
    }

    /**
     * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m basis reduction操作的初始化值
     * @since 1.8
     */
    public double reduceKeysT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>uble(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleFunction<? super K> transformer,DoubleBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceKeysT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,reducer).invoke();
    }

    /**
     * @since 1.8
     */
    public long reduceKeysToLong(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,ToLongFunction<? super K> transformer,LongBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceKeysToLongTask<K,reducer).invoke();
    }

    /**
     * @since 1.8
     */
    public int reduceKeysToInt(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,ToIntFunction<? super K> transformer,IntBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceKeysToIntTask<K,reducer).invoke();
    }

    /**
     * @since 1.8
     */
    public void forEachValue(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,Consumer<? super V> action) {
        if (action == null)
            throw new NullPointerException();
        new ForEachValueTask<K,action).invoke();
    }

    /**
     * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold 并行被处理的元素的个数阈值
     * @since 1.8
     */
    public <U> void forEachValue(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,Function<? super V,Consumer<? super U> action) {
        if (transformer == null || action == null)
            throw new NullPointerException();
        new ForEachTransformedValueTask<K,action).invoke();
    }

    /**
     * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold 并行被处理的元素的个数阈值
     * @since 1.8
     */
    public <U> U searchValues(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,? extends U> searchFunction) {
        if (searchFunction == null) throw new NullPointerException();
        return new SearchValuesTask<K,new <a href="https://www.jb51.cc/tag/atomicreference/" target="_blank">atomicreference</a><U>()).invoke();
    }

    /**
     *
     * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold t并行被处理的元素的个数阈值
     * @since 1.8
     */
    public V reduceValues(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,? extends V> reducer) {
        if (reducer == null) throw new NullPointerException();
        return new ReduceValuesTask<K,reducer).invoke();
    }

    /**
     * @since 1.8
     */
    public <U> U reduceValues(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,? extends U> reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceValuesTask<K,reducer).invoke();
    }

    /**
     * @since 1.8
     */
    public double reduceValuesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>uble(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleFunction<? super V> transformer,DoubleBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceValuesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,reducer).invoke();
    }

    /**
     * @since 1.8
     */
    public long reduceValuesToLong(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,ToLongFunction<? super V> transformer,LongBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceValuesToLongTask<K,reducer).invoke();
    }

    /**
     * @since 1.8
     */
    public int reduceValuesToInt(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,ToIntFunction<? super V> transformer,IntBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceValuesToIntTask<K,reducer).invoke();
    }

    /**
     * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold 并行被处理的元素的个数阈值
     * @since 1.8
     */
    public void forEachEntry(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,Consumer<? super Map.Entry<K,V>> action) {
        if (action == null) throw new NullPointerException();
        new ForEachEntryTask<K,V>(null,action).invoke();
    }

    /**
     * @since 1.8
     */
    public <U> void forEachEntry(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,Function<Map.Entry<K,Consumer<? super U> action) {
        if (transformer == null || action == null)
            throw new NullPointerException();
        new ForEachTransformedEntryTask<K,action).invoke();
    }

    /**
     * @since 1.8
     */
    public <U> U searchEntries(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,? extends U> searchFunction) {
        if (searchFunction == null) throw new NullPointerException();
        return new SearchEntriesTask<K,new <a href="https://www.jb51.cc/tag/atomicreference/" target="_blank">atomicreference</a><U>()).invoke();
    }

    /**
     * @since 1.8
     */
    public Map.Entry<K,V> reduceEntries(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,BiFunction<Map.Entry<K,Map.Entry<K,? extends Map.Entry<K,V>> reducer) {
        if (reducer == null) throw new NullPointerException();
        return new ReduceEntriesTask<K,reducer).invoke();
    }

    /**
     * @since 1.8
     */
    public <U> U reduceEntries(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,? extends U> reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceEntriesTask<K,reducer).invoke();
    }

    /**
     * @since 1.8
     */
    public double reduceEntriesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>uble(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleFunction<Map.Entry<K,V>> transformer,DoubleBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceEntriesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,reducer).invoke();
    }

    /**
     * @since 1.8
     */
    public long reduceEntriesToLong(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,ToLongFunction<Map.Entry<K,LongBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceEntriesToLongTask<K,reducer).invoke();
    }

    /**
     * @since 1.8
     */
    public int reduceEntriesToInt(long p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>llelismThreshold,ToIntFunction<Map.Entry<K,IntBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceEntriesToIntTask<K,reducer).invoke();
    }


    /* ----------------视图操作 Views -------------- */

    /**
     * Base class for views.
     */
    abstract static class CollectionView<K,E>
            implements Collection<E>,java.io.Serializable {
        private static final long serialVersionUID = 7249069246763182397L;
        final ConcurrentHashMap<K,V> map;
        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }

        /**
         * Returns the map <a href="https://www.jb51.cc/tag/backing/" target="_blank">backing</a> this view.
         *
         * @return the map <a href="https://www.jb51.cc/tag/backing/" target="_blank">backing</a> this view
         */
        public ConcurrentHashMap<K,V> getMap() { return map; }

        /**
         * Removes all of the elements from this view,by removing all
         * the mappings from the map <a href="https://www.jb51.cc/tag/backing/" target="_blank">backing</a> this view.
         */
        public final void clear()      { map.clear(); }
        public final int size()        { return map.size(); }
        public final boolean isEmpty() { return map.isEmpty(); }

        // implementations below rely on concrete classes supplying these
        // abstract methods
        /**
         * Returns an i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor over the elements in this collection.
         *
         * <p>The returned i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor is
         * <a href="package-summary.html#Weakly"&gt;<i>weakly consistent</i></a>.
         *
         * @return an i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor over the elements in this collection
         */
        public abstract I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<E> i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor();
        public abstract boolean contains(Object o);
        public abstract boolean remove(Object o);

        private static final String oomeMsg = "<a href="https://www.jb51.cc/tag/required/" target="_blank">required</a> array size too large";

        public final Object[] toArray() {
            long sz = map.mappingCount();
            if (sz > MAX_ARRAY_SIZE)
                throw new OutOfMemoryError(oomeMsg);
            int n = (int)sz;
            Object[] r = new Object[n];
            int i = 0;
            for (E e : this) {
                if (i == n) {
                    if (n >= MAX_ARRAY_SIZE)
                        throw new OutOfMemoryError(oomeMsg);
                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
                        n = MAX_ARRAY_SIZE;
                    else
                        n += (n >>> 1) + 1;
                    r = Arrays.<a href="https://www.jb51.cc/tag/cop/" target="_blank">cop</a>yOf(r,n);
                }
                r[i++] = e;
            }
            return (i == n) ? r : Arrays.<a href="https://www.jb51.cc/tag/cop/" target="_blank">cop</a>yOf(r,i);
        }

        @SuppressWarnings("unchecked")
        public final <T> T[] toArray(T[] a) {
            long sz = map.mappingCount();
            if (sz > MAX_ARRAY_SIZE)
                throw new OutOfMemoryError(oomeMsg);
            int m = (int)sz;
            T[] r = (a.length >= m) ? a :
                    (T[])<a href="https://www.jb51.cc/tag/javalang/" target="_blank">java.lang</a>.reflect.Array
                            .newInstance(a.getClass().getComponentType(),m);
            int n = r.length;
            int i = 0;
            for (E e : this) {
                if (i == n) {
                    if (n >= MAX_ARRAY_SIZE)
                        throw new OutOfMemoryError(oomeMsg);
                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
                        n = MAX_ARRAY_SIZE;
                    else
                        n += (n >>> 1) + 1;
                    r = Arrays.<a href="https://www.jb51.cc/tag/cop/" target="_blank">cop</a>yOf(r,n);
                }
                r[i++] = (T)e;
            }
            if (a == r &amp;&amp; i < n) {
                r[i] = null; // null-terminate
                return r;
            }
            return (i == n) ? r : Arrays.<a href="https://www.jb51.cc/tag/cop/" target="_blank">cop</a>yOf(r,i);
        }


        public final String toString() {
            StringBuilder sb = new StringBuilder();
            sb.append('[');
            I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<E> it = i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor();
            if (it.hasNext()) {
                for (;;) {
                    Object e = it.next();
                    sb.append(e == this ? "(this Collection)" : e);
                    if (!it.hasNext())
                        break;
                    sb.append(',').append(' ');
                }
            }
            return sb.append(']').toString();
        }

        public final boolean containsAll(Collection<?> c) {
            if (c != this) {
                for (Object e : c) {
                    if (e == null || !contains(e))
                        return false;
                }
            }
            return true;
        }

        public final boolean removeAll(Collection<?> c) {
            if (c == null) throw new NullPointerException();
            boolean modified = false;
            for (I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<E> it = i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor(); it.hasNext();) {
                if (c.contains(it.next())) {
                    it.remove();
                    modified = true;
                }
            }
            return modified;
        }

        public final boolean retainAll(Collection<?> c) {
            if (c == null) throw new NullPointerException();
            boolean modified = false;
            for (I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<E> it = i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor(); it.hasNext();) {
                if (!c.contains(it.next())) {
                    it.remove();
                    modified = true;
                }
            }
            return modified;
        }

    }

    /**
     * ConcurrentHashMap键的集合视图,通过映射到<a href="https://www.jb51.cc/tag/yige/" target="_blank">一个</a>公共值,<a href="https://www.jb51.cc/tag/tianjia/" target="_blank">添加</a>操作可以具有选择性。
     * 这个类不能直接实例化。
     * @since 1.8
     */
    public static class KeySetView<K,V> extends CollectionView<K,K>
            implements Set<K>,java.io.Serializable {
        private static final long serialVersionUID = 7249069246763182397L;
        private final V value;
        KeySetView(ConcurrentHashMap<K,V> map,V value) {  // non-public
            super(map);
            this.value = value;
        }

        /**
         * Returns the default mapped value for additions,* or {@code null} if additions are not supported.
         *
         * @return the default mapped value for additions,or {@code null}
         * if not supported
         */
        public V getMappedValue() { return value; }

        /**
         * {@inheritDoc}
         * @throws NullPointerException if the specified key is null
         */
        public boolean contains(Object o) { return map.containsKey(o); }

        /**
         * Removes the key from this map view,by removing the key (and its
         * corresponding value) from the <a href="https://www.jb51.cc/tag/backing/" target="_blank">backing</a> map.  This method does
         * <a href="https://www.jb51.cc/tag/nothing/" target="_blank">nothing</a> if the key is not in the map.
         *
         * @p<a href="https://www.jb51.cc/tag/ara/" target="_blank">ara</a>m  o the key to be removed from the <a href="https://www.jb51.cc/tag/backing/" target="_blank">backing</a> map
         * @return {@code true} if the <a href="https://www.jb51.cc/tag/backing/" target="_blank">backing</a> map contained the specified key
         * @throws NullPointerException if the specified key is null
         */
        public boolean remove(Object o) { return map.remove(o) != null; }

        /**
         * @return an i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor over the keys of the <a href="https://www.jb51.cc/tag/backing/" target="_blank">backing</a> map
         */
        public I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K> i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor() {
            Node<K,V>[] t;
            ConcurrentHashMap<K,V> m = map;
            int f = (t = m.table) == null ? 0 : t.length;
            return new KeyI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,m);
        }

        //<a href="https://www.jb51.cc/tag/tianjia/" target="_blank">添加</a>指定key,此时value为定义的<a href="https://www.jb51.cc/tag/mo/" target="_blank">默</a>认映射值
        public boolean add(K e) {
            V v;
            if ((v = value) == null)
                throw new UnsupportedOperationException();
            return map.putVal(e,true) == null;
        }

        public boolean addAll(Collection<? extends K> c) {
            boolean added = false;
            V v;
            if ((v = value) == null)
                throw new UnsupportedOperationException();
            for (K e : c) {
                if (map.putVal(e,true) == null)
                    added = true;
            }
            return added;
        }

        public int hashCode() {
            int h = 0;
            for (K e : this)
                h += e.hashCode();
            return h;
        }

        public boolean equals(Object o) {
            Set<?> c;
            return ((o instanceof Set) &amp;&amp;
                    ((c = (Set<?>)o) == this ||
                            (containsAll(c) &amp;&amp; c.containsAll(this))));
        }

        public Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K> spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor() {
            Node<K,V> m = map;
            long n = m.sumCount();
            int f = (t = m.table) == null ? 0 : t.length;
            return new KeySpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,n < 0L ? 0L : n);
        }

        public void forEach(Consumer<? super K> action) {
            if (action == null) throw new NullPointerException();
            Node<K,V>[] t;
            if ((t = map.table) != null) {
                Traverser<K,t.length);
                for (Node<K,V> p; (p = it.advance()) != null; )
                    action.accept(p.key);
            }
        }
    }

    /**
     * A view of a ConcurrentHashMap as a {@link Collection} of
     * values,in which additions are <a href="https://www.jb51.cc/tag/dis/" target="_blank">dis</a>abled. This class cannot be
     * directly instantiated. See {@link #values()}.
     */
    static final class ValuesView<K,V>
            implements Collection<V>,java.io.Serializable {
        private static final long serialVersionUID = 2249069246763182397L;
        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
        public final boolean contains(Object o) {
            return map.containsValue(o);
        }

        public final boolean remove(Object o) {
            if (o != null) {
                for (I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<V> it = i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor(); it.hasNext();) {
                    if (o.equals(it.next())) {
                        it.remove();
                        return true;
                    }
                }
            }
            return false;
        }

        public final I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<V> i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor() {
            ConcurrentHashMap<K,V> m = map;
            Node<K,V>[] t;
            int f = (t = m.table) == null ? 0 : t.length;
            return new ValueI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,m);
        }

        public final boolean add(V e) {
            throw new UnsupportedOperationException();
        }
        public final boolean addAll(Collection<? extends V> c) {
            throw new UnsupportedOperationException();
        }

        public Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<V> spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor() {
            Node<K,V> m = map;
            long n = m.sumCount();
            int f = (t = m.table) == null ? 0 : t.length;
            return new ValueSpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,n < 0L ? 0L : n);
        }

        public void forEach(Consumer<? super V> action) {
            if (action == null) throw new NullPointerException();
            Node<K,V> p; (p = it.advance()) != null; )
                    action.accept(p.val);
            }
        }
    }

    /**
     * A view of a ConcurrentHashMap as a {@link Set} of (key,value)
     * entries.  This class cannot be directly instantiated. See
     * {@link #entrySet()}.
     */
    static final class EntrySetView<K,V>>
            implements Set<Map.Entry<K,V>>,java.io.Serializable {
        private static final long serialVersionUID = 2249069246763182397L;
        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }

        public boolean contains(Object o) {
            Object k,r; Map.Entry<?,?>)o).getKey()) != null &amp;&amp;
                    (r = map.get(k)) != null &amp;&amp;
                    (v = e.getValue()) != null &amp;&amp;
                    (v == r || v.equals(r)));
        }

        public boolean remove(Object o) {
            Object k,?>)o).getKey()) != null &amp;&amp;
                    (v = e.getValue()) != null &amp;&amp;
                    map.remove(k,v));
        }

        /**
         * @return an i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor over the entries of the <a href="https://www.jb51.cc/tag/backing/" target="_blank">backing</a> map
         */
        public I<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<Map.Entry<K,V>> i<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor() {
            ConcurrentHashMap<K,V>[] t;
            int f = (t = m.table) == null ? 0 : t.length;
            return new EntryI<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,m);
        }

        public boolean add(Entry<K,V> e) {
            return map.putVal(e.getKey(),false) == null;
        }

        public boolean addAll(Collection<? extends Entry<K,V>> c) {
            boolean added = false;
            for (Entry<K,V> e : c) {
                if (add(e))
                    added = true;
            }
            return added;
        }

        public final int hashCode() {
            int h = 0;
            Node<K,V> p; (p = it.advance()) != null; ) {
                    h += p.hashCode();
                }
            }
            return h;
        }

        public final boolean equals(Object o) {
            Set<?> c;
            return ((o instanceof Set) &amp;&amp;
                    ((c = (Set<?>)o) == this ||
                            (containsAll(c) &amp;&amp; c.containsAll(this))));
        }

        public Spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<Map.Entry<K,V>> spli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor() {
            Node<K,V> m = map;
            long n = m.sumCount();
            int f = (t = m.table) == null ? 0 : t.length;
            return new EntrySpli<a href="https://www.jb51.cc/tag/tera/" target="_blank">tera</a>tor<K,n < 0L ? 0L : n,m);
        }

        public void forEach(Consumer<? super Map.Entry<K,V> p; (p = it.advance()) != null; )
                    action.accept(new MapEntry<K,map));
            }
        }

    }

    // -------------------------------------------------------

    //批量任务的基类。从类Traverser重复一些字段和<a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>,因为我们需要子类CountedCompleter。
    @SuppressWarnings("serial")
    abstract static class BulkTask<K,R> extends CountedCompleter<R> {
        Node<K,V>[] tab;        // same as Traverser
        Node<K,V> next;
        TableStack<K,spare;
        int index;
        int baseIndex;
        int baseLimit;
        final int baseSize;
        int batch;              // split control

        BulkTask(BulkTask<K,?> par,int b,int f,V>[] t) {
            super(par);
            this.batch = b;
            this.index = this.baseIndex = i;
            if ((this.tab = t) == null)
                this.baseSize = this.baseLimit = 0;
            else if (par == null)
                this.baseSize = this.baseLimit = t.length;
            else {
                this.baseLimit = f;
                this.baseSize = par.baseSize;
            }
        }

        /**
         * Same as Traverser version
         */
        final Node<K,n;
                if (e != null)
                    return next = e;
                if (baseIndex >= baseLimit || (t = tab) == null ||
                        (n = t.length) <= (i = index) || i < 0)
                    return next = null;
                if ((e = tabAt(t,V>)e).f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>t;
                    else
                        e = null;
                }
                if (stack != null)
                    recoverState(n);
                else if ((index = i + baseSize) >= n)
                    index = ++baseIndex;
            }
        }

        private void pushState(Node<K,V> s = spare;
            if (s != null)
                spare = s.next;
            else
                s = new TableStack<K,V>();
            s.tab = t;
            s.length = n;
            s.index = i;
            s.next = stack;
            stack = s;
        }

        private void recoverState(int n) {
            TableStack<K,V> next = s.next;
                s.next = spare; // save for reuse
                stack = next;
                spare = s;
            }
            if (s == null &amp;&amp; (index += baseSize) >= n)
                index = ++baseIndex;
        }
    }

    /*
     * 任务类。使用常规
     * 由于编译器无法知道我们已经对任务参数进行了空值检查,因此我们强制使用最简单的提升旁路来帮助避免复杂检查。
     */
    @SuppressWarnings("serial")
    static final class ForEachKeyTask<K,V>
            extends BulkTask<K,Void> {
        final Consumer<? super K> action;
        ForEachKeyTask
                (BulkTask<K,?> p,Consumer<? super K> action) {
            super(p,b,t);
            this.action = action;
        }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Consumer<? super K> action;
            if ((action = this.action) != null) {
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    new ForEachKeyTask<K,V>
                            (this,batch >>>= 1,tab,action).<a href="https://www.jb51.cc/tag/fork/" target="_blank">fork()</a>;
                }
                for (Node<K,V> p; (p = advance()) != null;)
                    action.accept(p.key);
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachValueTask<K,Void> {
        final Consumer<? super V> action;
        ForEachValueTask
                (BulkTask<K,Consumer<? super V> action) {
            super(p,t);
            this.action = action;
        }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Consumer<? super V> action;
            if ((action = this.action) != null) {
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    new ForEachValueTask<K,V> p; (p = advance()) != null;)
                    action.accept(p.val);
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachEntryTask<K,Void> {
        final Consumer<? super Entry<K,V>> action;
        ForEachEntryTask
                (BulkTask<K,Consumer<? super Entry<K,V>> action) {
            super(p,t);
            this.action = action;
        }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Consumer<? super Entry<K,V>> action;
            if ((action = this.action) != null) {
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    new ForEachEntryTask<K,V> p; (p = advance()) != null; )
                    action.accept(p);
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachMappingTask<K,Void> {
        final BiConsumer<? super K,? super V> action;
        ForEachMappingTask
                (BulkTask<K,? super V> action) {
            super(p,t);
            this.action = action;
        }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final BiConsumer<? super K,? super V> action;
            if ((action = this.action) != null) {
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    new ForEachMappingTask<K,V> p; (p = advance()) != null; )
                    action.accept(p.key,p.val);
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachTransformedKeyTask<K,U>
            extends BulkTask<K,Void> {
        final Function<? super K,? extends U> transformer;
        final Consumer<? super U> action;
        ForEachTransformedKeyTask
                (BulkTask<K,Consumer<? super U> action) {
            super(p,t);
            this.transformer = transformer; this.action = action;
        }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Function<? super K,? extends U> transformer;
            final Consumer<? super U> action;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (action = this.action) != null) {
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    new ForEachTransformedKeyTask<K,U>
                            (this,V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p.key)) != null)
                        action.accept(u);
                }
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachTransformedValueTask<K,Void> {
        final Function<? super V,? extends U> transformer;
        final Consumer<? super U> action;
        ForEachTransformedValueTask
                (BulkTask<K,t);
            this.transformer = transformer; this.action = action;
        }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Function<? super V,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    new ForEachTransformedValueTask<K,V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p.val)) != null)
                        action.accept(u);
                }
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachTransformedEntryTask<K,Void> {
        final Function<Map.Entry<K,? extends U> transformer;
        final Consumer<? super U> action;
        ForEachTransformedEntryTask
                (BulkTask<K,t);
            this.transformer = transformer; this.action = action;
        }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Function<Map.Entry<K,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    new ForEachTransformedEntryTask<K,V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p)) != null)
                        action.accept(u);
                }
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachTransformedMappingTask<K,Void> {
        final BiFunction<? super K,? extends U> transformer;
        final Consumer<? super U> action;
        ForEachTransformedMappingTask
                (BulkTask<K,t);
            this.transformer = transformer; this.action = action;
        }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final BiFunction<? super K,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    new ForEachTransformedMappingTask<K,V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p.key,p.val)) != null)
                        action.accept(u);
                }
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class SearchKeysTask<K,U> {
        final Function<? super K,? extends U> searchFunction;
        final <a href="https://www.jb51.cc/tag/atomicreference/" target="_blank">atomicreference</a><U> result;
        SearchKeysTask
                (BulkTask<K,? extends U> searchFunction,<a href="https://www.jb51.cc/tag/atomicreference/" target="_blank">atomicreference</a><U> result) {
            super(p,t);
            this.searchFunction = searchFunction; this.result = result;
        }
        public final U getRawResult() { return result.get(); }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Function<? super K,? extends U> searchFunction;
            final <a href="https://www.jb51.cc/tag/atomicreference/" target="_blank">atomicreference</a><U> result;
            if ((searchFunction = this.searchFunction) != null &amp;&amp;
                    (result = this.result) != null) {
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    if (result.get() != null)
                        return;
                    addToPendingCount(1);
                    new SearchKeysTask<K,result).<a href="https://www.jb51.cc/tag/fork/" target="_blank">fork()</a>;
                }
                while (result.get() == null) {
                    U u;
                    Node<K,V> p;
                    if ((p = advance()) == null) {
                        propagateCompletion();
                        break;
                    }
                    if ((u = searchFunction.apply(p.key)) != null) {
                        if (result.compareAndSet(null,u))
                            quietlyCompleteRoot();
                        break;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class SearchValuesTask<K,U> {
        final Function<? super V,? extends U> searchFunction;
        final <a href="https://www.jb51.cc/tag/atomicreference/" target="_blank">atomicreference</a><U> result;
        SearchValuesTask
                (BulkTask<K,t);
            this.searchFunction = searchFunction; this.result = result;
        }
        public final U getRawResult() { return result.get(); }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Function<? super V,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    if (result.get() != null)
                        return;
                    addToPendingCount(1);
                    new SearchValuesTask<K,V> p;
                    if ((p = advance()) == null) {
                        propagateCompletion();
                        break;
                    }
                    if ((u = searchFunction.apply(p.val)) != null) {
                        if (result.compareAndSet(null,u))
                            quietlyCompleteRoot();
                        break;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class SearchEntriesTask<K,U> {
        final Function<Entry<K,? extends U> searchFunction;
        final <a href="https://www.jb51.cc/tag/atomicreference/" target="_blank">atomicreference</a><U> result;
        SearchEntriesTask
                (BulkTask<K,Function<Entry<K,t);
            this.searchFunction = searchFunction; this.result = result;
        }
        public final U getRawResult() { return result.get(); }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Function<Entry<K,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    if (result.get() != null)
                        return;
                    addToPendingCount(1);
                    new SearchEntriesTask<K,V> p;
                    if ((p = advance()) == null) {
                        propagateCompletion();
                        break;
                    }
                    if ((u = searchFunction.apply(p)) != null) {
                        if (result.compareAndSet(null,u))
                            quietlyCompleteRoot();
                        return;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class SearchMappingsTask<K,U> {
        final BiFunction<? super K,? extends U> searchFunction;
        final <a href="https://www.jb51.cc/tag/atomicreference/" target="_blank">atomicreference</a><U> result;
        SearchMappingsTask
                (BulkTask<K,t);
            this.searchFunction = searchFunction; this.result = result;
        }
        public final U getRawResult() { return result.get(); }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final BiFunction<? super K,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    if (result.get() != null)
                        return;
                    addToPendingCount(1);
                    new SearchMappingsTask<K,V> p;
                    if ((p = advance()) == null) {
                        propagateCompletion();
                        break;
                    }
                    if ((u = searchFunction.apply(p.key,p.val)) != null) {
                        if (result.compareAndSet(null,u))
                            quietlyCompleteRoot();
                        break;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ReduceKeysTask<K,K> {
        final BiFunction<? super K,? extends K> reducer;
        K result;
        ReduceKeysTask<K,V> rights,nextRight;
        ReduceKeysTask
                (BulkTask<K,ReduceKeysTask<K,V> nextRight,? extends K> reducer) {
            super(p,t); this.nextRight = nextRight;
            this.reducer = reducer;
        }
        public final K getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final BiFunction<? super K,? extends K> reducer;
            if ((reducer = this.reducer) != null) {
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new ReduceKeysTask<K,rights,reducer)).<a href="https://www.jb51.cc/tag/fork/" target="_blank">fork()</a>;
                }
                K r = null;
                for (Node<K,V> p; (p = advance()) != null; ) {
                    K u = p.key;
                    r = (r == null) ? u : u == null ? r : reducer.apply(r,u);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    ReduceKeysTask<K,V>
                            t = (ReduceKeysTask<K,V>)c,s = t.rights;
                    while (s != null) {
                        K tr,sr;
                        if ((sr = s.result) != null)
                            t.result = (((tr = t.result) == null) ? sr :
                                    reducer.apply(tr,sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ReduceValuesTask<K,V> {
        final BiFunction<? super V,? extends V> reducer;
        V result;
        ReduceValuesTask<K,nextRight;
        ReduceValuesTask
                (BulkTask<K,ReduceValuesTask<K,? extends V> reducer) {
            super(p,t); this.nextRight = nextRight;
            this.reducer = reducer;
        }
        public final V getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final BiFunction<? super V,? extends V> reducer;
            if ((reducer = this.reducer) != null) {
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new ReduceValuesTask<K,reducer)).<a href="https://www.jb51.cc/tag/fork/" target="_blank">fork()</a>;
                }
                V r = null;
                for (Node<K,V> p; (p = advance()) != null; ) {
                    V v = p.val;
                    r = (r == null) ? v : reducer.apply(r,v);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    ReduceValuesTask<K,V>
                            t = (ReduceValuesTask<K,s = t.rights;
                    while (s != null) {
                        V tr,sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ReduceEntriesTask<K,V>> {
        final BiFunction<Map.Entry<K,V>> reducer;
        Map.Entry<K,V> result;
        ReduceEntriesTask<K,nextRight;
        ReduceEntriesTask
                (BulkTask<K,ReduceEntriesTask<K,BiFunction<Entry<K,V>> reducer) {
            super(p,t); this.nextRight = nextRight;
            this.reducer = reducer;
        }
        public final Map.Entry<K,V> getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final BiFunction<Map.Entry<K,V>> reducer;
            if ((reducer = this.reducer) != null) {
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new ReduceEntriesTask<K,reducer)).<a href="https://www.jb51.cc/tag/fork/" target="_blank">fork()</a>;
                }
                Map.Entry<K,V> r = null;
                for (Node<K,V> p; (p = advance()) != null; )
                    r = (r == null) ? p : reducer.apply(r,p);
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    ReduceEntriesTask<K,V>
                            t = (ReduceEntriesTask<K,s = t.rights;
                    while (s != null) {
                        Map.Entry<K,V> tr,sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    //MapReduce

    @SuppressWarnings("serial")
    static final class MapReduceKeysTask<K,? extends U> transformer;
        final BiFunction<? super U,? extends U> reducer;
        U result;
        MapReduceKeysTask<K,U> rights,nextRight;
        MapReduceKeysTask
                (BulkTask<K,MapReduceKeysTask<K,U> nextRight,? extends U> reducer) {
            super(p,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.reducer = reducer;
        }
        public final U getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Function<? super K,? extends U> transformer;
            final BiFunction<? super U,? extends U> reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceKeysTask<K,reducer)).<a href="https://www.jb51.cc/tag/fork/" target="_blank">fork()</a>;
                }
                U r = null;
                for (Node<K,V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p.key)) != null)
                        r = (r == null) ? u : reducer.apply(r,u);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceKeysTask<K,U>
                            t = (MapReduceKeysTask<K,U>)c,s = t.rights;
                    while (s != null) {
                        U tr,sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceValuesTask<K,? extends U> reducer;
        U result;
        MapReduceValuesTask<K,nextRight;
        MapReduceValuesTask
                (BulkTask<K,MapReduceValuesTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.reducer = reducer;
        }
        public final U getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Function<? super V,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceValuesTask<K,V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p.val)) != null)
                        r = (r == null) ? u : reducer.apply(r,u);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceValuesTask<K,U>
                            t = (MapReduceValuesTask<K,sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceEntriesTask<K,U> {
        final Function<Map.Entry<K,? extends U> reducer;
        U result;
        MapReduceEntriesTask<K,nextRight;
        MapReduceEntriesTask
                (BulkTask<K,MapReduceEntriesTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.reducer = reducer;
        }
        public final U getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final Function<Map.Entry<K,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceEntriesTask<K,V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p)) != null)
                        r = (r == null) ? u : reducer.apply(r,u);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceEntriesTask<K,U>
                            t = (MapReduceEntriesTask<K,sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceMappingsTask<K,? extends U> reducer;
        U result;
        MapReduceMappingsTask<K,nextRight;
        MapReduceMappingsTask
                (BulkTask<K,MapReduceMappingsTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.reducer = reducer;
        }
        public final U getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final BiFunction<? super K,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceMappingsTask<K,p.val)) != null)
                        r = (r == null) ? u : reducer.apply(r,u);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceMappingsTask<K,U>
                            t = (MapReduceMappingsTask<K,sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceKeysT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,Double> {
        final T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleFunction<? super K> transformer;
        final DoubleBinaryOperator reducer;
        final double basis;
        double result;
        MapReduceKeysT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,nextRight;
        MapReduceKeysT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask
                (BulkTask<K,MapReduceKeysT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,DoubleBinaryOperator reducer) {
            super(p,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Double getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleFunction<? super K> transformer;
            final DoubleBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                double r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceKeysT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,r,reducer)).<a href="https://www.jb51.cc/tag/fork/" target="_blank">fork()</a>;
                }
                for (Node<K,V> p; (p = advance()) != null; )
                    r = reducer.applyAsDouble(r,transformer.applyAsDouble(p.key));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceKeysT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,V>
                            t = (MapReduceKeysT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsDouble(t.result,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceValuesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,Double> {
        final T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleFunction<? super V> transformer;
        final DoubleBinaryOperator reducer;
        final double basis;
        double result;
        MapReduceValuesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,nextRight;
        MapReduceValuesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask
                (BulkTask<K,MapReduceValuesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Double getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleFunction<? super V> transformer;
            final DoubleBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                double r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceValuesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,transformer.applyAsDouble(p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceValuesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,V>
                            t = (MapReduceValuesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceEntriesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,Double> {
        final T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleFunction<Map.Entry<K,V>> transformer;
        final DoubleBinaryOperator reducer;
        final double basis;
        double result;
        MapReduceEntriesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,nextRight;
        MapReduceEntriesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask
                (BulkTask<K,MapReduceEntriesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Double getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleFunction<Map.Entry<K,V>> transformer;
            final DoubleBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                double r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceEntriesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,transformer.applyAsDouble(p));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceEntriesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,V>
                            t = (MapReduceEntriesT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceMappingsT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,Double> {
        final T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleBiFunction<? super K,? super V> transformer;
        final DoubleBinaryOperator reducer;
        final double basis;
        double result;
        MapReduceMappingsT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,nextRight;
        MapReduceMappingsT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask
                (BulkTask<K,MapReduceMappingsT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Double getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final T<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleBiFunction<? super K,? super V> transformer;
            final DoubleBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                double r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceMappingsT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,transformer.applyAsDouble(p.key,p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceMappingsT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,V>
                            t = (MapReduceMappingsT<a href="https://www.jb51.cc/tag/odo/" target="_blank">odo</a>ubleTask<K,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceKeysToLongTask<K,Long> {
        final ToLongFunction<? super K> transformer;
        final LongBinaryOperator reducer;
        final long basis;
        long result;
        MapReduceKeysToLongTask<K,nextRight;
        MapReduceKeysToLongTask
                (BulkTask<K,MapReduceKeysToLongTask<K,LongBinaryOperator reducer) {
            super(p,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Long getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final ToLongFunction<? super K> transformer;
            final LongBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                long r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceKeysToLongTask<K,V> p; (p = advance()) != null; )
                    r = reducer.applyAsLong(r,transformer.applyAsLong(p.key));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceKeysToLongTask<K,V>
                            t = (MapReduceKeysToLongTask<K,s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsLong(t.result,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceValuesToLongTask<K,Long> {
        final ToLongFunction<? super V> transformer;
        final LongBinaryOperator reducer;
        final long basis;
        long result;
        MapReduceValuesToLongTask<K,nextRight;
        MapReduceValuesToLongTask
                (BulkTask<K,MapReduceValuesToLongTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Long getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final ToLongFunction<? super V> transformer;
            final LongBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                long r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceValuesToLongTask<K,transformer.applyAsLong(p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceValuesToLongTask<K,V>
                            t = (MapReduceValuesToLongTask<K,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceEntriesToLongTask<K,Long> {
        final ToLongFunction<Map.Entry<K,V>> transformer;
        final LongBinaryOperator reducer;
        final long basis;
        long result;
        MapReduceEntriesToLongTask<K,nextRight;
        MapReduceEntriesToLongTask
                (BulkTask<K,MapReduceEntriesToLongTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Long getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final ToLongFunction<Map.Entry<K,V>> transformer;
            final LongBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                long r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceEntriesToLongTask<K,transformer.applyAsLong(p));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceEntriesToLongTask<K,V>
                            t = (MapReduceEntriesToLongTask<K,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceMappingsToLongTask<K,Long> {
        final ToLongBiFunction<? super K,? super V> transformer;
        final LongBinaryOperator reducer;
        final long basis;
        long result;
        MapReduceMappingsToLongTask<K,nextRight;
        MapReduceMappingsToLongTask
                (BulkTask<K,MapReduceMappingsToLongTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Long getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final ToLongBiFunction<? super K,? super V> transformer;
            final LongBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                long r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceMappingsToLongTask<K,transformer.applyAsLong(p.key,p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceMappingsToLongTask<K,V>
                            t = (MapReduceMappingsToLongTask<K,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceKeysToIntTask<K,Integer> {
        final ToIntFunction<? super K> transformer;
        final IntBinaryOperator reducer;
        final int basis;
        int result;
        MapReduceKeysToIntTask<K,nextRight;
        MapReduceKeysToIntTask
                (BulkTask<K,MapReduceKeysToIntTask<K,IntBinaryOperator reducer) {
            super(p,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Integer getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final ToIntFunction<? super K> transformer;
            final IntBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                int r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceKeysToIntTask<K,V> p; (p = advance()) != null; )
                    r = reducer.applyAsInt(r,transformer.applyAsInt(p.key));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceKeysToIntTask<K,V>
                            t = (MapReduceKeysToIntTask<K,s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsInt(t.result,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceValuesToIntTask<K,Integer> {
        final ToIntFunction<? super V> transformer;
        final IntBinaryOperator reducer;
        final int basis;
        int result;
        MapReduceValuesToIntTask<K,nextRight;
        MapReduceValuesToIntTask
                (BulkTask<K,MapReduceValuesToIntTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Integer getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final ToIntFunction<? super V> transformer;
            final IntBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                int r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceValuesToIntTask<K,transformer.applyAsInt(p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceValuesToIntTask<K,V>
                            t = (MapReduceValuesToIntTask<K,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceEntriesToIntTask<K,Integer> {
        final ToIntFunction<Map.Entry<K,V>> transformer;
        final IntBinaryOperator reducer;
        final int basis;
        int result;
        MapReduceEntriesToIntTask<K,nextRight;
        MapReduceEntriesToIntTask
                (BulkTask<K,MapReduceEntriesToIntTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Integer getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final ToIntFunction<Map.Entry<K,V>> transformer;
            final IntBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                int r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceEntriesToIntTask<K,transformer.applyAsInt(p));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceEntriesToIntTask<K,V>
                            t = (MapReduceEntriesToIntTask<K,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceMappingsToIntTask<K,Integer> {
        final ToIntBiFunction<? super K,? super V> transformer;
        final IntBinaryOperator reducer;
        final int basis;
        int result;
        MapReduceMappingsToIntTask<K,nextRight;
        MapReduceMappingsToIntTask
                (BulkTask<K,MapReduceMappingsToIntTask<K,t); this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis; this.reducer = reducer;
        }
        public final Integer getRawResult() { return result; }
        public final void co<a href="https://www.jb51.cc/tag/mpu/" target="_blank">mpu</a>te() {
            final ToIntBiFunction<? super K,? super V> transformer;
            final IntBinaryOperator reducer;
            if ((transformer = this.transformer) != null &amp;&amp;
                    (reducer = this.reducer) != null) {
                int r = this.basis;
                for (int i = baseIndex,h; batch > 0 &amp;&amp;
                        (h = ((f = baseLimit) + i) >>> 1) > i;) {
                    addToPendingCount(1);
                    (rights = new MapReduceMappingsToIntTask<K,transformer.applyAsInt(p.key,p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = f<a href="https://www.jb51.cc/tag/irs/" target="_blank">irs</a>tComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceMappingsToIntTask<K,V>
                            t = (MapReduceMappingsToIntTask<K,s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    /*-------Unsafe mechanics------*/
    /**
     * unsafe<a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>块控制了一些<a href="https://www.jb51.cc/tag/shuxing/" target="_blank">属性</a>的<a href="https://www.jb51.cc/tag/xiugai/" target="_blank">修改</a>工作,比如最常用的SIZECTL 。
     * <a href="https://www.jb51.cc/tag/zaizhe/" target="_blank">在这</a>一版本的concurrentHashMap中,大量应用来的CAS<a href="https://www.jb51.cc/tag/fangfa/" target="_blank">方法</a>进行变量、<a href="https://www.jb51.cc/tag/shuxing/" target="_blank">属性</a>的<a href="https://www.jb51.cc/tag/xiugai/" target="_blank">修改</a>工作。利用CAS进行无锁操作,可以大大提高<a href="https://www.jb51.cc/tag/xingneng/" target="_blank">性能</a>。
     * static<a href="https://www.jb51.cc/tag/daima/" target="_blank">代码</a>块中:大量使用了反射
     */
    private static final sun.misc.Unsafe U;
    private static final long SIZECTL;
    private static final long TRANSFERINDEX;
    private static final long BASECOUNT;
    private static final long CELLSBUSY;
    private static final long CELLVALUE;
    private static final long ABASE;
    private static final int ASHIFT;

    static {
        try {
            U = sun.misc.Unsafe.getUnsafe();
            Class<?> k = ConcurrentHashMap.class;
            SIZECTL = U.objectFieldOffset
                    (k.getDeclaredField("sizeCtl"));
            TRANSFERINDEX = U.objectFieldOffset
                    (k.getDeclaredField("transferIndex"));
            BASECOUNT = U.objectFieldOffset
                    (k.getDeclaredField("baseCount"));
            CELLSBUSY = U.objectFieldOffset
                    (k.getDeclaredField("cellsBusy"));
            Class<?> ck = CounterCell.class;
            CELLVALUE = U.objectFieldOffset
                    (ck.getDeclaredField("value"));
            Class<?> ak = Node[].class;
            ABASE = U.arrayBa<a href="https://www.jb51.cc/tag/SEO/" title="SEO">SEO</a>ffset(ak);
            int scale = U.arrayIndexScale(ak);
            if ((scale &amp; (scale - 1)) != 0)
                throw new Error("data type scale not a power of two");
            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
        } catch (Exception e) {
            throw new Error(e);
        }
    }
}

参考:nofollow">https://blog.csdn.net/u010723709/article/details/48007881

ConcurrentHashMap源码分析(JDK1.7)

ConcurrentHashMap源码分析(JDK1.7)

一、JDK1.7ConcurrentHashMap介绍

JDK1.7中ConcurrentHashMap底层是Segment数组,每一个Segment对象中包含一个HashEntry数组,保存的元素会封装成HashEntry对象,当遇到Hash冲突时,会形成链表
在这里插入图片描述
Segment继承ReentrantLock,当需要控制线程安全时,对单独的Segment进行加锁,即分段锁
几个默认值


  • DEFAULT_INITIAL_CAPACITY 默认初始化容量 16
  • MAXIMUM_CAPACITY 最大容量 2的30次幂
  • DEFAULT_LOAD_FACTOR 默认的负载因子 0.75
  • DEFAULT_CONCURRENCY_LEVEL 并发等级 16

二:构造器

	// 空参构造,调用重载的构造方法
    public ConcurrentHashMap() {
   
   
    	//调用本类的带参构造
    	//DEFAULT_INITIAL_CAPACITY = 16
    	//DEFAULT_LOAD_FACTOR = 0.75f
    	//int DEFAULT_CONCURRENCY_LEVEL = 16
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }
    // 指定数组初始化长度
	public ConcurrentHashMap(int initialCapacity) {
   
   
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }
    // 指定数组初始化长度与默认负载因子
	public ConcurrentHashMap(int initialCapacity, float loadFactor) {
   
   
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
    }
	// 所有参数全部指定
	public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
   
   
        // 做一些数据判断
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0; // 移动的位数,用于后续计算高4位的值
        int ssize = 1; // Segment数组的大小
        while (ssize < concurrencyLevel) {
   
    
            ++sshift;
            // 保证Segment大小为2的次幂,如指定concurrencyLevel 为15则 ssize为16,指定concurrencyLevel为17 则ssize为32
            ssize <<= 1;
        }
        // 这两个值用于后面计算Segment[]的角标
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        // 计算每个Segment中存储的元素个数
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        // 每个Segment最少存储2个HashEntry对象
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        // 保证Segment中存储的HashEntry个数是2的次幂
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        // 创建一个Segment对象,作为模板,后续创建Segment对象时,属性值直接复用,不再重新计算
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        // 创建出底层的Segment数组
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        // 使用Unsafe类,将创建的Segment对象放入数组下标为0的位置
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }
   
    // 根据已有的Map去构造
	public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
   
   
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY),
             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
        putAll(m);
    }

默认情况:在new一个ConcurrentHashMap时,底层创建了一个长度为16的Segment数组,每个Segment中保存了一个长度为2的HshEntry数组,之后保存的数据都是在HashEntry中。ConcurrentHashMap中默认元素长度为32,而不是16。

三:put方法

/**
* 保存/修改方法,可能会涉及到扩容
* 不允许存储Null键和Null值
*/
public V put(K key, V value) {
   
   
    Segment<K,V> s;
    if (value == null)
    	// 值不可以为Null
        throw new NullPointerException();
    // 基于key,计算hash值,计算hash值时,key若为Null会报空指针异常
    int hash = hash(key);
    // 取高位计算要保存的Segment数组的下标(HashEntry数组用的低位计算下标)
    int j = (hash >>> segmentShift) & segmentMask;
    // 如果该位置没有Segment对象,则创建一个Segment对象
    if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
         (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
        s = ensureSegment(j);
    // 调用Segmetn的put方法实现元素添加
    return s.put(key, hash, value, false);
}
/**
* 返回对应索引k位置的Segment对象,没有则使用索引位置0的Segment对象创建一个
* 这里没有使用锁机制,仅依靠Unsafe类进行操作
*/
private Segment<K,V> ensureSegment(int k) {
   
   
    final Segment<K,V>[] ss = this.segments;
    // k索引位置对应的偏移量
    long u = (k << SSHIFT) + SBASE; // raw offset
    Segment<K,V> seg;
    // 如果数组ss索引k的位置对应的Segment对象为null
    if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
   
   
    	// 使用构造器初始化时生成的Segment对象作为原型
        Segment<K,V> proto = ss[0]; // use segment 0 as prototype
        int cap = proto.table.length;
        float lf = proto.loadFactor;
        int threshold = (int)(cap * lf);
        HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
        // 再次确认在此过程中其他线程没有将该Segment对象创建出来
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
            == null) {
   
    // recheck
            Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
            while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                   == null) {
   
   
                   // 使用CAS将新建的Segment对象放置在数组的该位置中,如果放置成功,则break返回,如果失败再判断其余线程有没有放置成功,循环此操作
                if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                    break;
            }
        }
    }
    return seg;
}
/**
* Segment对象的put方法,加锁,然后保存值
*/
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
   
   
	// 尝试加锁,获取到锁则继续,获取不到则调用scanAndLockForPut方法获取锁
    HashEntry<K,V> node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
   
   
        HashEntry<K,V>[] tab = table;
        // 获取HashEntry数组的下标,这里用低位
        int index = (tab.length - 1) & hash;
        // 获取数组tab对应下标index的值,有可能为0
        HashEntry<K,V> first = entryAt(tab, index);
        for (HashEntry<K,V> e = first;;) {
   
   
        	// 获取的元素不为空
            if (e != null) {
   
   
                K k;
                // 如果重复,覆盖
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
   
   
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
   
   
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                // 不重复,获取链表的下一个元素
                e = e.next;
            }
            else {
   
   
                if (node != null)
                	// 如果node在等待锁的时候已经创建出来,则采用头插法直接插入即可
                    node.setNext(first);
                else
                	// 创建一个新的HashEntry,next属性指向first(头插法)
                    node = new HashEntry<K,V>(hash, key, value, first);
                int c = count + 1;
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                	// 如果超过扩容阈值,进行扩容,再将node插入
                    rehash(node);
                else 
                	// 不扩容,直接放到Entry数组中
                    setEntryAt(tab, index, node);
                ++modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
   
   
    	// 释放锁
        unlock();
    }
    return oldValue;
}
/**
* 使用Unsafe将元素e放到数组tab的下标i位置处
*/
static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
                               HashEntry<K,V> e) {
   
   
    UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
}

总结一下put流程:

  1. 首先判断不允许null值和null键
  2. 计算hash值,通过hash值的高位计算出要保存的Segment数组下标
  3. 判断Segment数组该下标位置是否有值,如果没有值,使用Unsafe类并自旋且使用Segment数组下标0位置的原型去创建一个Segment对象,创建对象时要判断其他线程有没有将此对象创建出来,如果获取到了其他线程创建的Segment对象,则将该对象返回
  4. 调用Segment对象的put方法去保存值
  5. 保存值时,首先尝试获得该Segment对象的锁,获取不到则自旋不停尝试获取锁,在此过程中会将要保存的值封装成一个HashEntry对象,节省之后的时间,如果自旋重试一定次数(64/1)后,不再自旋,强制加锁,阻塞等待锁
  6. 获取锁以后,先计算该值应该保存在Segment的HashEntry数组的哪一个位置,采用低位进行计算
  7. 获取HashEntry数组对应下标的值,记为first
  8. 遍历该位置的链表,如果first为null或者遍历完都不重复,则插入(头插法),插入时,如果在自旋获取锁时已经创建好HashEntry对象,直接使用,未创建好则去创建。如果在遍历链表过程中,找到重复的元素,进行替换。
  9. 在插入过程中,先判断是否需要扩容,需要扩容则进行扩容,扩容完将该元素插入到新数组中,不需要扩容则将此元素放到头结点。
  10. 最终释放锁

四:resize()扩容

扩容只针对加锁的单个Segment的HashEntry数组进行扩容,HashEntry数组大小变成2倍,但仅局限于当前的Segment,其余Segment中的HashEntry数组大小不会变化,另外,Segment数组大小在初始化以后也不会发生变化。

/**
* 扩容方法,扩容2倍,将
*/
private void rehash(HashEntry<K,V> node) {
   
   
    HashEntry<K,V>[] oldTable = table;
    int oldCapacity = oldTable.length;
    // 扩容2倍
    int newCapacity = oldCapacity << 1;
    threshold = (int)(newCapacity * loadFactor);
    // 创建一个新的HashEntry数组
    HashEntry<K,V>[] newTable =
        (HashEntry<K,V>[]) new HashEntry[newCapacity];
    int sizeMask = newCapacity - 1;
    // 进行数据迁移,将旧数组上面的
    for (int i = 0; i < oldCapacity ; i++) {
   
   
        HashEntry<K,V> e = oldTable[i];
        if (e != null) {
   
   
            HashEntry<K,V> next = e.next;
            // 计算新数组的下标
            int idx = e.hash & sizeMask;
            if (next == null)   //  Single node on list
            	// 该位置只有一个元素,直接放过去
                newTable[idx] = e;
            else {
   
    // Reuse consecutive sequence at same slot
                HashEntry<K,V> lastRun = e;
                int lastIdx = idx;
                for (HashEntry<K,V> last = next;
                     last != null;
                     last = last.next) {
   
   
                    // lastRun机制,对数据转移进行了一点优化,获取该位置最后计算出在新数组位置连续的元素,整体转移到新数组中去
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
   
   
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                newTable[lastIdx] = lastRun;
                // Clone remaining nodes
                // 转移剩余的元素,从原数组的头结点开始,到原数组的lastRun结点
                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
   
   
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry<K,V> n = newTable[k];
                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                }
            }
        }
    }
    // 将新的元素采用头插法插入到新数组中
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    // 将新数组赋值给Segment对象的HashEntry数组属性
    table = newTable;
}

resize()方法总结:

  1. 因为是在put方法中,已经获取到lock,所以可以确保线程安全
  2. 扩容时首先生成一个新的数组,大小为原数组的2倍
  3. 将原数组的元素迁移到新数组中,遍历原HashEntry数组,获取到每一个位置的HashEntry链表
  4. 计算原数据应该转移到新数组的下标,如果原HashEntry链表只有一个元素,直接转移到新链表
  5. 如果有多个,采用lastRun机制,先获取最后几个在新数组连续的元素,先转移过去
  6. 之后遍历剩余的链表,根据原HashEntry元素生成新的HashEntry对象,并采用头插法放到新数组中
  7. 数据转移完之后,将新的元素再计算下标之后,头插法放到新数组中
  8. 将新数组更新到Segment对象中

六:get方法

public V get(Object key) {
   
   
    Segment<K,V> s; // manually integrate access methods to reduce overhead
    HashEntry<K,V>[] tab;
    // 如果key为null,在这一步会抛异常
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    // 获取Segment数组对应下标的Segment对象以及该Segment对象的HashEntry数组,并且两者都不为空
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
   
   
        // 获取HashEntry数组对应下标的链表,遍历获取值
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
   
   
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}

get方法总结:

  1. 先计算获取该key对应哪一个Segment对象(key若为null,则空指针)
  2. 再计算该key对应Segment对象的哪一个HashEntry链表
  3. 遍历链表获取值
  4. 这几步有任一步骤获取不到值,返回null。

七:size方法

/**
* 获取ConcurrentHashMap的大小
* 先计算两遍,看一下两遍计算的值是否相等,若相等则返回
* 若两次计算结果不一致,则再计算一遍并比较
* 若再次计算以后结果与上一次计算结果还不一致,则加锁计算
*/
public int size() {
   
   
    // Try a few times to get accurate count. On failure due to
    // continuous async changes in table, resort to locking.
    final Segment<K,V>[] segments = this.segments;
    int size;
    boolean overflow; // true if size overflows 32 bits
    long sum;         // sum of modCounts
    long last = 0L;   // previous sum
    int retries = -1; // first iteration isn''t retry
    try {
   
   
        for (;;) {
   
   
        	// 先比较再自加,RETRIES_BEFORE_LOCK为2
        	// -1 0 1 共循环三次
            if (retries++ == RETRIES_BEFORE_LOCK) {
   
   
            	// 对每一个Segment进行加锁
                for (int j = 0; j < segments.length; ++j)
                    ensureSegment(j).lock(); // force creation
            }
            sum = 0L;
            size = 0;
            overflow = false;
            for (int j = 0; j < segments.length; ++j) {
   
   
                Segment<K,V> seg = segmentAt(segments, j);
                if (seg != null) {
   
   
                    sum += seg.modCount;
                    int c = seg.count;
                    // 计算每一个segment的count之和
                    if (c < 0 || (size += c) < 0)
                        overflow = true;
                }
            }
            // 如果连续两次计算值一致,则返回
            if (sum == last)
                break;
            // 修改次数之和不一致,将此次计算结果记为last,再计算一遍
            last = sum;
        }
    } finally {
   
   
        if (retries > RETRIES_BEFORE_LOCK) {
   
   
        	// 如果已经加锁,则释放锁
            for (int j = 0; j < segments.length; ++j)
                segmentAt(segments, j).unlock();
        }
    }
    return overflow ? Integer.MAX_VALUE : size;
}

size方法总结:

  1. 因为在计算ConcurrentHashMap的size时,有可能会并发插入/删除数据
  2. 首先不加锁,计算两次所有Segment对象的modCount之和,判断是否一致,如果不一致再循环计算一次
  3. 如果再循环一次计算的和与之前计算还不一致,就加锁进行计算,这里加锁前最多计算三次。

结语:还在学习过程中,做一个学习记录,如有不对的地方,欢迎批评指正。

ConcurrentHashMap源码分析(一)

ConcurrentHashMap源码分析(一)

属性

// 最大容量 2的30次方
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认容量16
private static final int DEFAULT_CAPACITY = 16;
// 最大的数组长度 integer的最大长度减8,8这部分存放的是对象头,其中包括数组的长度,具体可了解jvm对象头的相关内容
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
// 并发级别,这个字段没有使用,定义来兼容以前的版本
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
// 负载因子,当元素个数大于最大容量*负载因子时,需要扩容
private static final float LOAD_FACTOR = 0.75f;
// 链表转为红黑树的阈值,超过8由链表转为红黑树
static final int TREEIFY_THRESHOLD = 8;
// 树转链表的阈值,小于等于6 树转链表
static final int UNTREEIFY_THRESHOLD = 6;

static final int MIN_TREEIFY_CAPACITY = 64;

private static final int MIN_TRANSFER_STRIDE = 16;

private static int RESIZE_STAMP_BITS = 16;

private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;

private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;

static final int MOVED     = -1;

static final int TREEBIN   = -2;

static final int RESERVED  = -3;

static final int HASH_BITS = 0x7fffffff;

static final int NCPU = Runtime.getRuntime().availableProcessors();

private static final ObjectStreamField[] serialPersistentFields = {
        new ObjectStreamField("segments", Segment[].class),
        new ObjectStreamField("segmentMask", Integer.TYPE),
        new ObjectStreamField("segmentShift", Integer.TYPE)
    };
// 数组,在第一次插入的时候才会初始化,数组长度总是2的n次幂
transient volatile Node<K,V>[] table;
// 下一个数组,只有当调整size的时候才非空
private transient volatile Node<K,V>[] nextTable;
// 基本的计数器,通常在没有争用的时候使用,但也用于在初始化争用是的回退,通常通过CAS更新值
private transient volatile long baseCount;
// table初始化和resizing控制
// -1:表示正在初始化
// -(1+threads):表示当前有threads个线程正在扩容
// 当非负时
//    如果数组为null,表示数组创建数组的长度
//    如果是0,表示默认值,会在初始化的时候使用
//    如果数组不是null,表示下一次扩容的阈值
private transient volatile int sizeCtl;
private transient volatile int transferIndex;
private transient volatile int cellsBusy;
private transient volatile CounterCell[] counterCells;
private transient KeySetView<K,V> keySet;
private transient ValuesView<K,V> values;
private transient EntrySetView<K,V> entrySet;

构造方法

    /**
     * 空构造,初始化容量16
     */
    public ConcurrentHashMap() {
    }
	
    /**
     * 指定容量
     */
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
				   // tableSizeFor用来返回一个大于initialCapacity且最接近2的n次幂的值,比如initialCapacity=6,返回16
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }
	
    /**
     * 给定一个map
     */
    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }
	
    /**
     * 给定初始化大小和负载因子
     */
    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, 1);
    }
	
    /**
     * 给定初始容量、负载因子和并发级别
     */
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }

关于死磕 java集合之ConcurrentHashMap源码分析的介绍现已完结,谢谢您的耐心阅读,如果想了解更多关于ConcurrentHashMap源码分析、ConcurrentHashMap源码分析-Java8、ConcurrentHashMap源码分析(JDK1.7)、ConcurrentHashMap源码分析(一)的相关知识,请在本站寻找。

本文标签: